版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市牛栏山一中2025届高二上数学期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,若该三角形有两个解,则范围是()A. B.C. D.2.在正方体中,,则()A. B.C. D.3.已知点是椭圆上的任意一点,过点作圆:的切线,设其中一个切点为,则的取值范围为()A. B.C. D.4.下列问题中是古典概型的是A.种下一粒杨树种子,求其能长成大树的概率B.掷一颗质地不均匀的骰子,求出现1点的概率C.在区间[1,4]上任取一数,求这个数大于1.5概率D.同时掷两枚质地均匀的骰子,求向上的点数之和是5的概率5.椭圆的短轴长为()A.8 B.2C.4 D.6.在数列中,若,,则()A.16 B.32C.64 D.1287.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.8.函数f(x)=-1+lnx,对∀x0,f(x)≥0成立,则实数a的取值范围是()A(-∞,2] B.[2,+∞)C.(-∞,1] D.[1,+∞)9.已知、分别为双曲线的左、右焦点,且,点P为双曲线右支一点,为的内心,若成立,给出下列结论:①点的横坐标为定值a;②离心率;③;④当轴时,上述结论正确的是()A.①② B.②③C.①②③ D.②③④10.在中,角所对的边分别为,,,则外接圆的面积是()A. B.C. D.11.已知直线与垂直,则为()A.2 B.C.-2 D.12.已知数列满足:,,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.平面直角坐标系内动点M()与定点F(4,0)的距离和M到定直线的距离之比是常数,则动点M的轨迹是___________14.若函数在区间上的最大值是,则__________15.已知数列的前项和为,且,若点在直线上,则______;______.16.已知直线与直线垂直,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在△ABC中,角A,B,C所对的边分别a,b,c.已知2bcosB=ccosA+acosC(1)求B;(2)若a=2,,设D为CB延长线上一点,且AD⊥AC,求线段BD的长18.(12分)已知椭圆经过点,椭圆E的一个焦点为(1)求椭圆E的方程;(2)若直线l过点且与椭圆E交于A,B两点.求的最大值19.(12分)已知对于,函数有意义,关于k的不等式成立.(1)若为假命题,求k的取值范围;(2)若p是q的必要不充分条件,求m的取值范围.20.(12分)已知椭圆的左顶点、上顶点和右焦点分别为,且的面积为,椭圆上的动点到的最小距离是(1)求椭圆的方程;(2)过椭圆的左顶点作两条互相垂直的直线交椭圆于不同的两点(异于点).①证明:动直线恒过轴上一定点;②设线段中点为,坐标原点为,求的面积的最大值.21.(12分)已知抛物线的焦点为,点在抛物线上,当以为始边,为终边的角时,.(1)求的方程(2)过点的直线交于两点,以为直径的圆平行于轴的直线相切于点,线段交于点,求的面积与的面积的比值22.(10分)已知甲射击的命中率为0.7.乙射击的命中率为0.8,甲乙两人的射击互相独立.求:(1)甲乙两人同时击中目标的概率;(2)甲乙两人中至少有一个人击中目标的概率;(3)甲乙两人中恰有一人击中目标的概率
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据三角形解得个数可直接构造不等式求得结果.【详解】三角形有两个解,,即.故选:D.2、A【解析】根据空间向量基本定理,结合空间向量加法的几何意义进行求解即可.【详解】因为,而,所以有,故选:A3、B【解析】设,得到,利用椭圆的范围求解.【详解】解:设,则,,,因为,所以,即,故选:B4、D【解析】A、B两项中的基本事件的发生不是等可能的;C项中基本事件的个数是无限多个;D项中基本事件的发生是等可能的,且是有限个.故选D【考点】古典概型的判断5、C【解析】根据椭圆的标准方程求出,进而得出短轴长.【详解】由,可得,所以短轴长为.故选:C.6、C【解析】根据题意,为等比数列,用基本量求解即可.【详解】因为,故是首项为2,公比为2的等比数列,故.故选:C7、A【解析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A8、B【解析】由导数求得的最小值,由最小值非负可得的范围【详解】定义域是,,若,则在上恒成立,单调递增,,不合题意;若,则时,,递减,时,,递增,所以时,取得极小值也是最小值,由题意,解得故选:B9、C【解析】利用双曲线的定义、几何性质以及题意对选项逐个分析判断即可【详解】对于①,设内切圆与的切点分别为,则由切线长定理可得,因为,,所以,所以点的坐标为,所以点的横坐标为定值a,所以①正确,对于②,因为,所以,化简得,即,解得,因为,所以,所以②正确,对于③,设的内切圆半径为,由双曲线的定义可得,,因为,,所以,所以,所以③正确,对于④,当轴时,可得,此时,所以,所以④错误,故选:C10、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【详解】因为,所以,由余弦定理得,,所以,设外接圆的半径为,由正统定理得,,所以,所以外接圆的面积是.故选:B.11、A【解析】利用一般式中直线垂直的系数关系列式求解.【详解】因为直线与垂直,故选:A.12、A【解析】由a1=3,,利用递推思想,求出数列的前11项,推导出数列{an}从第6项起是周期为3的周期数列,由此能求出a2022【详解】解:∵数列{an}满足:a1=3,,∴a2=3a1+1=10,5,a4=3a3+1=16,a58,4,a72,a81,a9=3a8+1=4,a102,a111,∴数列{an}从第6项起是周期为3的周期数列,∵2022=5+672×3+1,∴a2022=a6=4故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据直接法,即可求轨迹.【详解】解:动点与定点的距离和它到定直线的距离之比是常数,根据题意得,点的轨迹就是集合,由此得.将上式两边平方,并化简,得所以,动点的轨迹是长轴长、短轴长分别为12、的椭圆故答案为:14、0【解析】由函数,又由,则,根据二次函数的性质,即可求解函数的最大值,得到答案.【详解】由函数,因为,所以,当时,则,所以.【点睛】本题主要考查了余弦函数的性质,以及二次函数的图象与性质,其中解答中根据余弦函数,转化为关于的二次函数,利用二次函数的图象与性质是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.15、①.;②.【解析】根据等差数列的定义,结合等差数列前项和公式、裂项相消法进行求解即可.【详解】因为点在直线上,所以,所以数列是以,公差为的等差数列,所以;因为,所以,于是,故答案为:;16、-3【解析】因为直线与直线垂直,所以考点:本题考查两直线垂直的充要条件点评:若两直线方程分别为,则他们垂直的充要条件是三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用正弦定理化简已知条件,求得,由此求得.(2)利用正弦定理求得,由列方程来求得.【小问1详解】,由正弦定理得,因为,所以,.【小问2详解】由(1)知,,由正弦定理:得,,或(舍去),,,所以由得,,18、(1);(2).【解析】(1)利用代入法,结合焦点的坐标、椭圆中的关系进行求解即可;(2)根据直线l是否存在斜率分类讨论,结合一元二次方程根的判别式、根与系数关系、弦长公式、基本不等式进行求解即可.【小问1详解】依题意:,解得,,∴椭圆E的方程为;【小问2详解】当直线l的斜率存在时,设,,由得由得.由,得当且仅当,即时等号成立当直线l的斜率不存在时,,∴的最大值为19、(1)(2)【解析】(1)由与的真假相反,得出为真命题,将定义域问题转化为不等式的恒成立问题,讨论参数的取值,得出答案;(2)由必要不充分条件的定义得出,讨论的取值结合包含关系得出的范围.【详解】解:(1)因为为假命题,所以为真命题,所以对恒成立.当时,不符合题意;当时,则有,则.综上,k的取值范围为.(2)由,得.由(1)知,当为真命题时,则令令因为p是q的必要不充分条件,所以当时,,,解得当时,,符合题意;当时,,符合题意;所以的取值范围是【点睛】本题主要考查了不等式的恒成立问题以及根据必要不充分条件求参数范围,属于中档题.20、(1)(2)①证明见解析;②【解析】(1)根据题意得,,解方程即可;(2)①设直线:,直线:,联立曲线分别求出点和的坐标,求直线方程判断定点即可;②根据题意得,代入求最值即可.【小问1详解】根据题意得,,,又,三个式子联立解得,,,所以椭圆的方程为:【小问2详解】①证明:设两条直线分别为和,根据题意和得斜率存在且不等于;因为,所以设直线:,直线:;由,解得,所以,同理,.当时,,所以直线的方程为:,整理得,此时直线过定点;当时,直线的方程为:,此时直线过定点,故直线恒过定点.②根据题意得,,,,所以,当且仅当,即时等号成立,故的面积的最大值为:.【点睛】解决直线与椭圆综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题21、(1)(2)【解析】(1)过点作,垂足为,过点作,垂足为,根据抛物线的定义,得到,求得,即可求得抛物线的方程;(2)设直线的方程为,联立方程组求得,得到,由抛物线的定义得到,根据,求得,设,得到,进而求得,因为为的中点,求得,即可求解.【小问1详解】解:由题意,抛物线,可得其准线方程,如图所示,过点作,垂足为,过点作,垂足为,因为时,,可得,又由抛物线的定义,可得,解得,所以抛物线的方程为.【小问2详解】解:由抛物线,可得,设,因为直线的直线过点,设直线的方程为联立方程组,整理得,可得,则,因为为的中点,所以,由抛物线的定义得,设圆与直线相切于点,因为交于点,所以且,所以,即,解得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 郑州西亚斯学院《西方音乐史二》2022-2023学年第一学期期末试卷
- 软件维护变更协议
- 物品赠与合同协议书
- 原纸购销合同分包协议
- 板式换热器招标疑问
- 郑州西亚斯学院《大学体育三》2022-2023学年第一学期期末试卷
- 剧院和电影院设备招标信息
- 个人信用保证书
- 私人购房卖房协议
- 有机物料肥料购销合同
- MOOC 理论力学-长安大学 中国大学慕课答案
- 第7课+全球航路的开辟和欧洲早期殖民扩张+导学案-2023-2024学年中职高一下学期高教版(2023)世界历史全一册
- 人教版小学数学第1课时 观察物体(教学课件)
- 招标代理服务服务方案
- 移动政企解决方案经理竞聘
- 河南神马盐业股份有限公司叶县姚寨盐矿矿山地质环境保护与土地复垦方案
- 养殖水环境化学全套教学课件
- 数字化时代背景下教师角色的思考
- 《网上支付与安全》课件
- 小学语文中段整本书阅读的指导策略研究 中期报告
- 健身指导与管理职业生涯规划书
评论
0/150
提交评论