版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
七年级数学下册解法技巧思维培优专题01平行线中的拐点问题典例题型一内凹型1.(2020•福州三模)如图,已知AB∥DE,∠A=40°,∠ACD=100°,则∠D的度数是()A.40° B.50° C.60° D.80°2.(2020•覃塘区期末)如图,直线12∥12,∠A=125°,∠B=85°,则∠1+∠2=.3.(2020•濉溪期末)如图所示,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=115°,那么∠BFD的度数是()A.62° B.64° C.57.5° D.60°典例题型二外凹型4.(2020•沙坪坝区校级月考)如图,a∥b,∠1=55°,∠2=130°,则∠3=()A.100° B.105° C.110° D.115°5.(2020•黄冈期末)某小区地下停车场入口了栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=°.6.(2020•梁子湖区期末)如图,如果AB∥CD,那么角α,β,γ之间的关系式为()A.α+β+γ=360° B.α﹣β+γ=180° C.α+β+γ=180° D.α+β﹣γ=180°典例题型三外错型7.(2020•凉山州)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135° B.125° C.115° D.105°8.(2020•襄汾期末)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是()A.110° B.115° C.120° D.125°9.(2020•鸡东期末)如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360° B.∠1+∠2﹣∠3=180° C.∠1﹣∠2+∠3=180° D.∠1+∠2+∠3=180°典例题型四综合型10.(2020•文登区期末)如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为()A.97° B.117° C.125° D.152°11.(2020•北碚区期末)如图,一条公路修到湖边时需绕道,第一次拐角∠B=120°,第二次拐角∠C=140°,为了保持公路AB与DE平行,则第三次拐角∠D的度数应为()A.130° B.140° C.150° D.160°12.(2020•潜江期末)如图,AB∥CD,∠BED=60°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB的度数是.巩固练习1.(2020•新乡二模)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80° B.90° C.100° D.102°2.(2020•高明区期末)如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65° B.70° C.75° D.80°3.(2020•宿豫区期中)如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()A.25° B.50° C.65° D.70°4.(2020•稷山校级一模)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77° B.97° C.103° D.113°5.(2020•温岭市一模)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30° B.40° C.50° D.60°6.(2020•遂宁期末)如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95° B.∠β﹣∠α=95° C.∠α+∠β=85° D.∠β﹣∠α=85°7.(2020•河南模拟)如图,将矩形ABCD沿GH折叠,点C路在点Q处,点D落在AB边上的点E处,若∠AGE=34°.则∠BHQ等于()A.73° B.34° C.45° D.30°8.(2020•孟津期末)如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90° C.x+y+z=180° D.y+z﹣x=90°9.(2020•福州期末)如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=43°,则∠B=()A.43° B.57° C.47° D.45°10.(2020•沙坪坝区校级期末)将一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G、D、C分别在M、N的位置上,若∠EFG=52°,则∠2﹣∠1=°.11.(2020•泉州期末)如图,将一张长方形纸条沿某条直线折叠,若∠1=116°,则∠2等于.12.(2020•开远市二模)如图,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,则∠BED的度数为.七年级数学下册解法技巧思维培优专题01平行线中的拐点问题典例题型一内凹型1.(2020•福州三模)如图,已知AB∥DE,∠A=40°,∠ACD=100°,则∠D的度数是()A.40° B.50° C.60° D.80°【点睛】首先过C作CF∥AB,再证明AB∥FC∥DE,根据平行线的性质可得∠A=∠ACF=40°,∠D=∠FCD,进而得到答案.【解析】解:过C作CF∥AB,∵AB∥DE,∴AB∥FC∥DE,∴∠A=∠ACF=40°,∠D=∠FCD,∵∠ACD=100°,∴∠FCD=100°﹣40°=60°,∴∠D=60°.故选:C.2.(2020•覃塘区期末)如图,直线12∥12,∠A=125°,∠B=85°,则∠1+∠2=30°.【点睛】过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.【解析】解:如图,过点A作l1的平行线,过点B作l2的平行线,∴∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故答案为30°.3.(2020•濉溪期末)如图所示,已知AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BED=115°,那么∠BFD的度数是()A.62° B.64° C.57.5° D.60°【点睛】过E作EG∥AB,过F作FH∥AB,依据平行线的性质,即可得到∠ABE+∠CDE=115°,再根据角平分线的定义以及平行线的性质,即可得出∠BFD的度数.【解析】解:如图,过E作EG∥AB,过F作FH∥AB,∵AB∥CD,∴EG∥CD,FH∥CD,∴∠ABE=∠GEB,∠CDE=∠GED,∴∠BED=∠ABE+∠CDE=115°,又∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=1∴∠ABF+∠CDF=12(∠ABE+∠∵AB∥FH∥CD,∴∠ABF=∠BFH,∠CDF=∠DFH,∴∠BFD=∠BFH+∠DFH=∠ABF+∠CDF=57.5°,故选:C.典例题型二外凹型4.(2020•沙坪坝区校级月考)如图,a∥b,∠1=55°,∠2=130°,则∠3=()A.100° B.105° C.110° D.115°【点睛】作平行线,构建平行线的性质可得∠5的度数,由平角的定义可得∠4的度数,从而得结论.【解析】解:过A作c∥a,∴∠3+∠4=180°,∵a∥b,∴b∥c,∴∠2+∠5=180°,∵∠2=130°,∴∠5=50°,∵∠1=55°,∴∠4=180°﹣55°﹣50°=75°,∴∠3=180°﹣75°=105°,故选:B.5.(2020•黄冈期末)某小区地下停车场入口了栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=120°.【点睛】过点B作BF∥CD,则CD∥BF∥AE,得出∠CBF+∠BCD=180°,∠FBA+∠BAE=180°,由∠BCD=150°,∠BAE=90°,得出∠CBF=30°,∠FBA=90°,即可得出结果.【解析】解:过点B作BF∥CD,如图所示:∵CD∥AE,∴CD∥BF∥AE,∴∠CBF+∠BCD=180°,∠FBA+∠BAE=180°,∵∠BCD=150°,∠BAE=90°,∴∠CBF=30°,∠FBA=90°,∴∠ABC=∠CBF+∠FBA=120°;故答案为:120.6.(2020•梁子湖区期末)如图,如果AB∥CD,那么角α,β,γ之间的关系式为()A.α+β+γ=360° B.α﹣β+γ=180° C.α+β+γ=180° D.α+β﹣γ=180°【点睛】首先过点E作EF∥AB,由AB∥CD,即可得EF∥AB∥CD,根据两直线平行,同旁内角互补与两直线平行,内错角相等,即可求得∠α+∠1=180°,∠2=∠γ,继而求得α+β﹣γ=180°.【解析】解:过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠α+∠1=180°,∠2=∠γ,∵∠β=∠1+∠2=180°﹣∠α+∠γ,∴α+β﹣γ=180°.故选:D.典例题型三外错型7.(2020•凉山州)如图,BD∥EF,AE与BD交于点C,∠B=30°,∠A=75°,则∠E的度数为()A.135° B.125° C.115° D.105°【点睛】直接利用三角形的外角性质得出∠ACD度数,再利用平行线的性质分析得出答案.【解析】解:∵∠B=30°,∠A=75°,∴∠ACD=30°+75°=105°,∵BD∥EF,∴∠E=∠ACD=105°.故选:D.8.(2020•襄汾期末)如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是()A.110° B.115° C.120° D.125°【点睛】直接利用平行线的性质结合三角形外角的性质得出答案.【解析】解:延长FE交DC于点N,∵AB∥EF,∴∠BCD=∠FND=100°,∵∠CDE=15°,∴∠DEF=∠CDE+∠DNF=115°.故选:B.9.(2020•鸡东期末)如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360° B.∠1+∠2﹣∠3=180° C.∠1﹣∠2+∠3=180° D.∠1+∠2+∠3=180°【点睛】过A作AB∥a,可得a∥AB∥b,依据平行线的性质,即可得到∠1+∠BAD=180°,∠2=∠BAC=∠3+∠BAD,进而得出∠1+∠2﹣∠3=180.【解析】解:如图,过A作AB∥a,∵a∥b,∴AB∥b,∴∠1+∠BAD=180°,∠2=∠BAC=∠3+∠BAD,∴∠BAD=∠2﹣∠3,∴∠1+∠2﹣∠3=180°,故选:B.典例题型四综合型10.(2020•文登区期末)如图,直线m∥n,AB⊥BC,∠1=35°,∠2=62°,则∠BCD的度数为()A.97° B.117° C.125° D.152°【点睛】过B作BE∥m,过C作CF∥n,依据平行线的性质,即可得到∠DCF=∠2=62°,∠BCF=∠EBC=55°,进而得到∠BCD的度数.【解析】解:如图,过B作BE∥m,过C作CF∥n,∵m∥n,∴m∥BE∥CF∥n,∴∠ABE=∠1=35°,∠DCF=∠2=62°,又∵AB⊥BC,∴∠ABC=90°,∴∠EBC=90°﹣35°=55°,∴∠BCF=∠EBC=55°,∴∠BCD=∠BCF+∠DCF=55°+62°=117°,故选:B.11.(2020•北碚区期末)如图,一条公路修到湖边时需绕道,第一次拐角∠B=120°,第二次拐角∠C=140°,为了保持公路AB与DE平行,则第三次拐角∠D的度数应为()A.130° B.140° C.150° D.160°【点睛】先延长BC,ED交于点F,根据平行线的性质,得出∠F=∠B=120°,再根据∠BCD=140°,可得∠DCF=40°,根据∠CDE=∠F+∠DCF进行计算即可.【解析】解:如图,延长BC,ED交于点F,∵AB∥EF,∴∠F=∠B=120°,∵∠BCD=140°,∴∠DCF=40°,∴∠CDE=∠F+∠DCF=120°+40°=160°,故选:D.12.(2020•潜江期末)如图,AB∥CD,∠BED=60°,∠ABE的平分线与∠CDE的平分线交于点F,则∠DFB的度数是150°.【点睛】过点E作EG∥AB,根据平行线的性质可得“∠ABE+∠BEG=180°,∠GED+∠EDC=180°”,根据角的计算以及角平分线的定义可得“∠FBE+∠EDF=12(∠ABE+∠【解析】解:如图,过点E作EG∥AB,∵AB∥CD,∴AB∥CD∥GE,∴∠ABE+∠BEG=180°,∠GED+∠EDC=180°,∴∠ABE+∠CDE+∠BED=360°;又∵∠BED=60°,∴∠ABE+∠CDE=300°.∵∠ABE和∠CDE的平分线相交于F,∴∠FBE+∠EDF=12(∠ABE+∠∵四边形的BFDE的内角和为360°,∴∠BFD=360°﹣150°﹣60°=150°.故答案为:150°.巩固练习1.(2020•新乡二模)如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80° B.90° C.100° D.102°【点睛】根据平行线性质求出∠A,根据三角形外角性质得出∠2=∠1﹣∠A,代入求出即可.【解析】解:∵AB∥CD,∴∠A=∠3=40°,∵∠1=120°,∴∠2=∠1﹣∠A=80°,故选:A.2.(2020•高明区期末)如图,已知AB∥CD,直线AB,CD被BC所截,E点在BC上,若∠1=45°,∠2=35°,则∠3=()A.65° B.70° C.75° D.80°【点睛】由平行线的性质可求得∠C,在△CDE中利用三角形外的性质可求得∠3.【解析】解:∵AB∥CD,∴∠C=∠1=45°,∵∠3是△CDE的一个外角,∴∠3=∠C+∠2=45°+35°=80°,故选:D.3.(2020•宿豫区期中)如图,把一个长方形纸片沿EF折叠后,点C、D分别落在M、N的位置.若∠EFB=65°,则∠AEN等于()A.25° B.50° C.65° D.70°【点睛】根据平行线的性质可得∠DEF=65°,再由折叠可得∠NEF=∠DEF=65°,再根据平角定义可得答案.【解析】解:∵∠EFB=65°,AD∥CB,∴∠DEF=65°,由折叠可得∠NEF=∠DEF=65°,∴∠AEN=180°﹣65°﹣65°=50°,故选:B.4.(2020•稷山校级一模)如图,直线a∥b,∠1=32°,∠2=45°,则∠3的度数是()A.77° B.97° C.103° D.113°【点睛】由直线a∥b,利用“两直线平行,内错角相等”可得出∠4的度数,结合对顶角相等可得出∠5的度数,再利用三角形内角和定理可求出∠3的度数.【解析】解:给图中各角标上序号,如图所示.∵直线a∥b,∴∠4=∠2=45°,∴∠5=45°.∵∠1+∠3+∠5=180°,∴∠3=180°﹣32°﹣45°=103°.故选:C.5.(2020•温岭市一模)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30° B.40° C.50° D.60°【点睛】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解析】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.6.(2020•遂宁期末)如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A.∠α+∠β=95° B.∠β﹣∠α=95° C.∠α+∠β=85° D.∠β﹣∠α=85°【点睛】过C作CF∥AB,根据平行线的性质得到∠1=∠α,∠2=180°﹣∠β,于是得到结论.【解析】解:过C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠1=∠α,∠2=180°﹣∠β,∵∠BCD=95°,∴∠1+∠2=∠α+180°﹣∠β=95°,∴∠β﹣∠α=85°.故选:D.7.(2020•河南模拟)如图,将矩形ABCD沿GH折叠,点C路在点Q处,点D落在AB边上的点E处,若∠AGE=34°.则∠BHQ等于()A.73° B.34° C.45° D.30°【点睛】由折叠可得,∠DGH=∠EGH=12∠DGE=73°,再根据AD∥BC,即可得到∠BHG=∠DGH=73°,根据EG∥QH,即可得到∠QHG=180°﹣∠【解析】解:∵∠AGE=34°,∴∠DGE=146°,由折叠可得,∠DGH=∠EGH=12∠∵AD∥BC,∴∠BHG=∠DGH=73°,∵EG∥QH,∴∠QHG=180°﹣∠EGH=107°,∴∠BHQ=∠QHG﹣∠BHG=107°﹣73°=34°.故选:B.8.(2020•孟津期末)如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90° C.x+y+z=180° D.y+z﹣x=90°【点睛】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【解析】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.9.(2020•福州期末)如图,BC⊥AE,垂足为C,过C作CD∥AB,若∠ECD=43°,则∠B=()A.43° B.57° C.47° D.45°【点睛】利用平行线的性质和三角形内角和定理计算即可.【解析】解:∵BC⊥AE,∴∠ACB=90°,∵CD∥AB,∴∠ECD=∠A=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度影视联合制作合同标的合作制作流程与责任分配3篇
- 2024版房产遗产继承合同2篇
- 2024年度物业管理委托合同(修订版)3篇
- 通风系统安装劳务合同
- 解除购房合同协议书
- 污水管网运营维护合同
- 2024年度数字化图书馆建设与租赁合同3篇
- 二零二四年度工程咨询服务合同标的为新建办公楼3篇
- 2024年度合作合同合作目标和具体合作内容3篇
- 广州管圆线虫病的临床护理
- 2024年浙江省杭州余杭区机关事业单位招用编外人员27人历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 《公输》课件-【中职专用】高一语文(高教版2023基础模块上册)
- 医用耗材临时供应合同
- 基于PLC的车库自动门控制系统的设计
- 抵制校园霸凌校园安全课件
- 应急预案演练记录表
- 跨语际跨文化研究通论智慧树知到期末考试答案2024年
- 工程伦理智慧树知到期末考试答案2024年
- 转型中的中东经济研究报告
- 药师求职简历
- “互联网+”创新应用(山东联盟)智慧树知到期末考试答案2024年
评论
0/150
提交评论