版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省阜新市第二高级中学2025届高一数学第一学期期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设a为实数,“”是“对任意的正数x,”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件2.在如图所示的多面体ABCDB1C1D1中,四边形ABCD、四边形BCC1B1、四边形CDC1C1都是边长为6的正方形,则此多面体ABCDB1C1D1的体积()A.72 B.144C.180 D.2163.图(1)是某条公共汽车线路收支差额关于乘客量的图象,图(2)、(3)是由于目前本条路线亏损,公司有关人员提出的两种扭亏为盈的建议,则下列说法错误的是()A.图(1)的点的实际意义为:当乘客量为0时,亏损1个单位B.图(1)的射线上的点表示当乘客量小于3时将亏损,大于3时将盈利C.图(2)的建议为降低成本而保持票价不变D.图(3)的建议为降低成本的同时提高票价4.若定义在R上的偶函数满足,且当时,f(x)=x,则函数y=f(x)-的零点个数是A.6个 B.4个C.3个 D.2个5.如果且,那么直线不经过()A第一象限 B.第二象限C.第三象限 D.第四象限6.过点且与直线垂直的直线方程为A. B.C. D.7.已知函数,则的解析式是()A. B.C. D.8.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与9.为了给地球减负,提高资源利用率,垃圾分类在全国渐成风尚,假设2021年两市全年用于垃圾分类的资金均为万元.在此基础上,市每年投入的资金比上一年增长20%,市每年投入的资金比上一年增长50%,则市用于垃圾分类的资金开始超过市的两倍的年份是()(参考数据:)A.2022年 B.2025届C.2025届 D.2025年10.设集合,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知实数满足,则________12.函数的图象与轴相交于点,如图是它的部分图象,若函数图象相邻的两条对称轴之间的距离为,则_________.13.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.14.函数的递减区间是__________.15.两平行线与的距离是__________16.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知等腰梯形中,,,是的中点,,将沿着翻折成,使平面平面.(1)求证:平面;(2)求与平面所成的角;(3)在线段上是否存在点,使得平面,若存在,求出的值;若不存在,说明理由.18.已知q和n均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x1+x2q+…+xnqn-1,xi∈M,i=1,2,…,n}(1)当q=2,n=3时,用列举法表示集合A.(2)设s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,其中ai,bi∈M,i=1,2,…,n.证明:若an<bn,则s<t.19.已知为奇函数,为偶函数,且.(1)求及的解析式及定义域;(2)如果函数,若函数有两个零点,求实数的取值范围.20.已知集合,B=[3,6].(1)若a=0,求;(2)xB是xA的充分条件,求实数a的取值范围.21.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据题意利用基本不等式分别判断充分性和必要性即可.【详解】若,因为,则,当且仅当时等号成立,所以充分性成立;取,因为,则,当且仅当时等号成立,即时,对任意的正数x,,但,所以必要性不成立,综上,“”是“对任意的正数x,”的充分非必要条件.故选:A.2、C【解析】把该几何体补成正方体ABCD-A1B1C1D1,此多面体ABCDB1C1D1的体积V=-,求之即可【详解】如图,把该几何体补成正方体ABCD-A1B1C1D1,此多面体ABCDB1C1D1的体积V=-=63-=180故选C【点睛】本题主要考查四棱锥体积的求法,考查化归与转化思想、数形结合思想,是中档题3、D【解析】根据一次函数的性质,结合选项逐一判断即可.【详解】A:当时,,所以当乘客量为0时,亏损1个单位,故本选项说法正确;B:当时,,当时,,所以本选项说法正确;C:降低成本而保持票价不变,两条线是平行,所以本选项正确;D:由图可知中:成本不变,同时提高票价,所以本选项说法不正确,故选:D4、B【解析】因为偶函数满足,所以的周期为2,当时,,所以当时,,函数的零点等价于函数与的交点个数,在同一坐标系中,画出的图象与的图象,如上图所示,显然的图象与的图象有4个交点.选B.点睛:本题考查了根的存在性及根的个数判断,以及函数与方程的思想,是中档题.根据函数零点和方程的关系进行转化是解答本题的关键5、C【解析】由条件可得直线的斜率的正负,直线在轴上的截距的正负,进而可得直线不经过的象限【详解】解:由且,可得直线斜率为,直线在y轴上的截距,故直线不经过第三象限,故选C【点睛】本题主要考查确定直线位置的几何要素,属于基础题6、D【解析】所求直线的斜率为,故所求直线的方程为,整理得,选D.7、A【解析】由于,所以.8、B【解析】根据两个函数的定义域相同且对应关系也相同,逐项判断即可【详解】由于函数的定义域为,函数的定义域为,所以与不是同一个函数,故A错误;由于的定义域为,函数且定义域为,所以与是同一函数,故B正确;在函数中,,解得或,所以函数的定义域为,在函数中,,解得,所以的定义域为,所以与不是同一函数,故C错误;由于函数的定义域为,函数定义域为为,所以与不是同一函数,故D错误;故选:B.9、D【解析】设经过年后,市投入资金为万元,市投入资金为万元,即可表示出、,由题意可得,利用对数的运算性质解出的取值范围即可【详解】解:设经过年后,市投入资金为万元,则,市投入资金为万元,则由题意可得,即,即,即,即所以,所以,即2025年该市用于垃圾分类的资金开始超过市的两倍;故选:D10、C【解析】集合,根据元素和集合的关系知道故答案为C二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】方程的根与方程的根可以转化为函数与函数交点的横坐标和函数与函数交点的横坐标,再根据与互为反函数,关于对称,即可求出答案.【详解】,,令,,此方程的解即为函数与函数交点的横坐标,设为,如下图所示;,此方程的解即为函数与函数交点的横坐标,设为,如下图所示,与互反函数,关于对称,联立方程,解得,即,.故答案为:4.12、【解析】根据图象可得,由题意得出,即可求出,再代入即可求出,进而得出所求.【详解】由函数图象可得,相邻的两条对称轴之间的距离为,,则,,,又,即,,或,根据“五点法”画图可判断,,.故答案为:.13、①②③④【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.14、【解析】先求出函数的定义域,再根据复合函数单调性“同增异减”原则求出函数的单调递减区间即可得出答案【详解】解:意可知,解得,所以的定义域是,令,对称轴是,在上是增函数,在是减函数,又在定义域上是增函数,是和的复合函数,的单调递减区间是,故答案为:【点睛】本题主要考查对数型复合函数的单调区间,属于基础题15、【解析】直接根据两平行线间的距离公式得到平行线与的距离为:故答案为.16、23【解析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)30°;(3)存在,.【解析】(1)首先根据已知条件并结合线面垂直的判定定理证明平面,再证明即可求解;(2)根据(1)中结论找出所求角,再结合已知条件即可求解;(3)首先假设存在,然后根据线面平行的性质以及已知条件,看是否能求出点的具体位置,即可求解.【详解】(1)因为,是的中点,所以,故四边形是菱形,从而,所以沿着翻折成后,,又因为,所以平面,由题意,易知,,所以四边形是平行四边形,故,所以平面;(2)因为平面,所以与平面所成的角为,由已知条件,可知,,所以是正三角形,所以,所以与平面所成的角为30°;(3)假设线段上是存在点,使得平面,过点作交于,连结,,如下图:所以,所以,,,四点共面,又因平面,所以,所以四边形为平行四边形,故,所以为中点,故在线段上存在点,使得平面,且.18、(1)A={0,1,2,3,4,5,6,7};(2)见解析.【解析】(Ⅰ)当q=2,n=3时,M={0,1},A={x|x=x1+x2•2+x3•22,xi∈M,i=1,2,3}.即可得到集合A;(Ⅱ)由于ai,bi∈M,i=1,2,…,n.an<bn,可得an-bn≤-1.由题意可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤-[1+q+…+qn-2+qn-1],再利用等比数列的前n项和公式即可得出试题解析:(1)当q=2,n=3时,M={0,1},A={x|x=x1+x2·2+x3·22,xi∈M,i=1,2,3},可得A={0,1,2,3,4,5,6,7}(2)证明:由s,t∈A,s=a1+a2q+…+anqn-1,t=b1+b2q+…+bnqn-1,ai,bi∈M,i=1,2,…,n及an<bn,可得s-t=(a1-b1)+(a2-b2)q+…+(an-1-bn-1)qn-2+(an-bn)qn-1≤(q-1)+(q-1)q+…+(q-1)qn-2-qn-1=-qn-1=-1<0,所以s<t.19、(1),(2)【解析】(1)根据是奇函数,是偶函数,结合,以取代入上式得到,联立求解;(2)易得,,设,转化为,,根据时,与有两个交点,转化为函数,在有一个零点求解.【小问1详解】解:因为是奇函数,是偶函数,所以,,∵,①∴令取代入上式得,即,②联立①②可得,,【小问2详解】,,,可得,∴,.设,∴,,∵当时,与有两个交点,要使函数有两个零点,即使得函数,在有一个零点,(时,只有一个零点)即方程在内只有一个实根,∵,令,则使即可,∴或.∴的取值范围.20、(1)(2)【解析】(1)先化简集合A,再去求;(2)结合函数的图象,可以简单快捷地得到关于实数a的不等式组,即可求得实数a的取值范围.【小问1详解】当时,,又,故【小问2详解】由是的充分条件,得,即任意,有成立函数的图象是开口向上的抛物线,故,解得,所以a的取值范围为21、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度光伏组件背板产业分析报告
- 二零二五版共享办公空间租赁管理合同2篇
- 2024-2025学年新教材高中历史第八单元中华民族的抗日战争和人民解放战争第23课从局部抗战到全面抗战学案新人教版必修中外历史纲要上
- 2024-2025学年高中政治专题三信守合同与违约2订立合同有学问训练含解析新人教版选修5
- 2024-2025学年新教材高中英语UNIT1TEENAGELIFESectionⅡDiscoveringUsefulStructures课时作业含解析新人教版必修第一册
- 2025年度临时劳动合同范本(区块链技术应用)4篇
- 2025年度城市绿化工程合同及后期养护服务3篇
- 2024租赁合同(办公设备)
- 2025年度智慧城市建设战略合作合同范本3篇
- 2025年度监狱门卫安全责任书3篇
- 岩土工程勘察课件0岩土工程勘察
- 《肾上腺肿瘤》课件
- 2024-2030年中国典当行业发展前景预测及融资策略分析报告
- 《乘用车越野性能主观评价方法》
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 动物医学类专业生涯发展展示
- 批发面包采购合同范本
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 2024年大数据分析公司与中国政府合作协议
- 一年级数学(上)计算题专项练习汇编
评论
0/150
提交评论