新疆昌吉回族自治州玛纳斯县第一中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第1页
新疆昌吉回族自治州玛纳斯县第一中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第2页
新疆昌吉回族自治州玛纳斯县第一中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第3页
新疆昌吉回族自治州玛纳斯县第一中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第4页
新疆昌吉回族自治州玛纳斯县第一中学2025届高二数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆昌吉回族自治州玛纳斯县第一中学2025届高二数学第一学期期末质量跟踪监视模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,空间四边形OABC中,,,,点M在上,且满足,点N为BC的中点,则()A. B.C. D.2.如图,在正方体中,E为的中点,则直线与平面所成角的正弦值为()A. B.C. D.3.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为()A. B.3C. D.24.已知四面体中,,若该四面体的外接球的球心为,则的面积为()A. B.C. D.5.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.96.在中国古代,人们用圭表测量日影长度来确定节气,一年之中日影最长一天被定为冬至.从冬至算起,依次有冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,若冬至、立春、春分日影长之和为31.5尺,小寒、雨水,清明日影长之和为28.5尺,则大寒、惊蛰、谷雨日影长之和为()A.25.5尺 B.34.5尺C.37.5尺 D.96尺7.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定8.直线l的方向向量为,且l过点,则点到l的距离为()A B.C. D.9.已知函数,.若存在三个零点,则实数的取值范围是()A. B.C. D.10.已知椭圆的左右焦点分别为、,点在椭圆上,若、、是一个直角三角形的三个顶点,则点到轴的距离为A B.4C. D.11.已知等比数列的公比为,则“是递增数列”的一个充分条件是()A. B.C. D.12.下列导数运算正确的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线与直线垂直,则______14.若直线与函数的图象有三个交点,则实数a的取值范围是_________15.若p:存在,使是真命题,则实数a的取值范围是______16.已知平面和两条不同的直线,则下列判断中正确的序号是___________.①若,则;②若,则;③若,则;④若,则;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为深入学习贯彻总书记在党史学习教育动员大会上的重要讲话精神和中共中央有关决策部署,推动教育系统围绕建党百年重大主题,深化中学在校师生理想信念教育,引导师生学史明理、学史增信、学史崇德、学史力行,以昂扬的状态迎接中国共产党建党周年,哈工大附中高二年级组织本年级同学开展了一场党史知识竞赛.为了解本次知识竞赛的整体情况,随机抽取了名学生的成绩作为样本进行统计,得到如图所示的频率分布直方图(1)求直方图中a的值,并求该次知识竞赛成绩的第50百分位数(精确到0.1);(2)已知该样本分数在的学生中,男生占,女生占现从该样本分数在的学生中随机抽出人,求至少有人是女生的概率.18.(12分)已知椭圆C:()的离心率为,并且经过点,(1)求椭圆C的方程;(2)设点关于坐标原点的对称点为,点为椭圆C上任意一点,直线的斜率分别为,,求证:为定值19.(12分)如图,在四棱锥中,侧面底面,是以为斜边的等腰直角三角形,,,,点E为的中点.(1)证明:平面;(2)求二面角的余弦值.20.(12分)如图1,已知矩形中,,E为上一点且.现将沿着折起,使点D到达点P的位置,且,得到的图形如图2.(1)证明为直角三角形;(2)设动点M在线段上,判断直线与平面位置关系,并说明理由.21.(12分)已知椭圆的一个顶点恰好是抛物线的焦点,椭圆C的离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)从椭圆C在第一象限内的部分上取横坐标为2的点P,若椭圆C上有两个点A,B使得的平分线垂直于坐标轴,且点B与点A的横坐标之差为,求直线AP的方程.22.(10分)中,三内角A,B,C所对的边分别为a,b,c,已知(1)求角A;(2)若,角A的角平分线交于D,,求a

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由空间向量的线性运算求解【详解】由题意,又,,,∴,故选:B2、D【解析】构建空间直角坐标系,求直线的方向向量、平面的法向量,应用空间向量的坐标表示,求直线与平面所成角的正弦值.【详解】以点D为坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,,,,可得,,,设面的法向量为,有,取,则,所以,,,则直线与平面所成角的正弦值为故选:D.3、B【解析】由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.【详解】由已知,不妨设,则,因为,所以点在以为直径的圆上,即是以P为直角顶点的直角三角形,故,即,又,所以,解得,所以故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.4、C【解析】根据四面体的性质,结合线面垂直的判定定理、球的性质、正弦定理进行求解即可.【详解】由图设点为中点,连接,由,所以,面,则面,且,所以球心面,所以平面与球面的截面为大圆,延长线与此大圆交于点.在三角形中,由,所以,由正弦定理知:三角形的外接圆半径为,设三角形的外接圆圆心为点,则面,有,则,设的外接圆圆心为点,则面,由正弦定理知:三角形PAB的外接圆半径为,所以,又三角形中,,所以为的角平分线,则,在直角三角形OMD中,,在直角三角形OED中,,在三角形中,取中点,由,所以,故选:C.【点睛】关键点睛:运用正弦定理、勾股定理、线面垂直的判定定理是解题的关键.5、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B6、A【解析】由题意可知,十二个节气其日影长依次成等差数列,设冬至日的日影长为尺,公差为尺,利用等差数列的通项公式,求出,即可求出,从而得到答案【详解】设从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{},如冬至日的日影长为尺,设公差为尺.由题可知,所以,,,,故选:A7、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C8、C【解析】利用向量投影和勾股定理即可计算.【详解】∵,∴又,∴在方向上的投影,∴P到l距离故选:C.9、B【解析】根据题意,当时,有一个零点,进而将问题转化为当时,有两个实数根,再研究函数即可得答案.【详解】解:因为存在三个零点,所以方程有三个实数根,因为当时,由得,解得,有且只有一个实数根,所以当时,有两个实数根,即有两个实数根,所以令,则,所以当时,,单调递增,当时,,单调递减,因为,,,所以的图象如图所示,所以有两个实数根,则故选:B10、D【解析】设椭圆短轴的一个端点为根据椭圆方程求得c,进而判断出,即得或令,进而可得点P到x轴的距离【详解】解:设椭圆短轴的一个端点为M由于,,;,只能或令,得,故选D【点睛】本题主要考查了椭圆的基本应用考查了学生推理和实际运算能力是基础题11、D【解析】由等比数列满足递增数列,可进行和两项关系的比较,从而确定和的大小关系.【详解】由等比数列是递增数列,若,则,得;若,则,得;所以等比数列是递增数列,或,;故等比数列是递增数列是递增数列的一个充分条件为,.故选:D.12、B【解析】利用基本初等函数的导数和复合函数的导数,依次分析即得解【详解】选项A,,错误;选项B,,正确;选项C,,错误;选项D,,错误故选:B二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据两直线垂直得,即可求出答案.【详解】由直线与直线垂直得,.故答案为:.14、【解析】求导函数,分析导函数的符号,得出原函数的单调性和极值,由此可求得答案.【详解】解:因为函数,则,所以当或时,,函数单调递减;当时,,函数单调递增,所以当时,函数取得极小值,当时,函数取得极大值,因为直线与函数的图象有三个交点,所以实数a的取值范围是,故答案为:.15、【解析】将问题分离参数得到存在,使成立,可得结论.【详解】存在,使,即存在,使,所以故答案为:16、②④【解析】根据直线与直线,直线与平面的位置关系依次判断每个选项得到答案.详解】若,则或,异面,或,相交,①错误;若,则,②正确;若,则或或与相交,③错误;若,则,④正确;故答案为:②④.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用频率和为1求出a;利用百分位数的定义求出知识竞赛成绩的第50百分位数;(2)先利用分层抽样求出男、女生的人数,利用古典概型求概率.【小问1详解】,由,解得设该次知识竞赛成绩的第50百分位数为x,则,解得:.即该次知识竞赛成绩的第50百分位数为【小问2详解】由频率分布直方图可知:分数在)的人数有人,所以这人中,女生有人,记为、,男生有人,记为、、、从这人中随机选取人,基本事件为:、、、、、、、、、、、、、、,共种不同取法;则至少有人是女生的基本事件为、、、、、、、、,共种不同取法,则所求的概率为18、(1)(2)证明见解析【解析】(1)根据题意可列出关于的三个方程,解出即可得到椭圆C的方程;(2)根据对称可得点坐标,再根据斜率公式可得,然后由点为椭圆C上的点得,代入化简即可求出为定值【小问1详解】由题意解得,.所以椭圆C的方程为.【小问2详解】因为点关于坐标原点的对称点为,所以的坐标为.,,所以,又因为点为椭圆C上的点,所以.19、(1)见解析;(2)【解析】(1)用线线平行证明线面平行,∴在平面PCD内作BE的平行线即可;(2)求二面角的大小,可以用空间向量进行求解,根据已知条件,以AD中点O为原点,OB,AD,OP分别为x、y、z轴建立坐标系﹒【小问1详解】如图,取PD中点F,连接EF,FC﹒∵E是AP中点,∴EFAD,由题知BCAD,∴BCEF,∴BCFE是平行四边形,∴BE∥CF,又CF平面PCD,BE平面PCD,∴BE∥平面PCD;【小问2详解】取AD中点O,连接OP,OB,∵是以为斜边等腰直角三角形,∴OP⊥AD,又平面平面,平面PAD∩平面=AD,∴OP⊥平面ABCD,∵OB平面ABCD,∴OP⊥OB,由BC∥AD,CD⊥AD,AD=2BC知OB⊥OD,∴OP、OB、OD两两垂直,故以O原点,OB、OD、OP分别为x、y、z轴,建立空间直角坐标系Oxyz,如图:设|BC|=1,则B(1,0,0),D(0,1,0),E(0,),P(0,0,1),则,设平面BED的法向量为,平面PBD的法向量为则,取,,取设二面角的大小为θ,则cosθ=﹒20、(1)证明见解析(2)答案不唯一,见解析【解析】(1)利用折叠前后的线段长度及勾股定理求证即可;(2)动点M满足时和,但时两种情况,利用线线平行或相交得到结论.【小问1详解】在折叠前的图中,如图:,E为上一点且,则,折叠后,所以,又,所以,所以为直角三角形.小问2详解】当动点M在线段上,满足,同样在线段上取,使得,则,当时,则,又且所以,且,所以四边形为平行四边形,所以,又平面,所以此时平面;当时,此时,但,所以四边形为梯形,所以与必然相交,所以与平面必然相交.综上,当动点M满足时,平面;当动点M满足,但时,与平面相交.21、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意可得关于参数的方程,解之即可得到结果;(Ⅱ)设直线AP的斜率为k,联立方程结合韦达定理可得A点坐标,同理可得B点坐标,结合横坐标之差为,可得直线方程.【详解】(Ⅰ)由抛物线方程可得焦点为,则椭圆C的一个顶点为,即.由,解得.∴椭圆C的标准方程是;(Ⅱ)由题可知点,设直线AP的斜率为k,由题意知,直线BP的斜率为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论