2025届湖南省湘南教研联盟高二数学第一学期期末监测模拟试题含解析_第1页
2025届湖南省湘南教研联盟高二数学第一学期期末监测模拟试题含解析_第2页
2025届湖南省湘南教研联盟高二数学第一学期期末监测模拟试题含解析_第3页
2025届湖南省湘南教研联盟高二数学第一学期期末监测模拟试题含解析_第4页
2025届湖南省湘南教研联盟高二数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省湘南教研联盟高二数学第一学期期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为调查学生的课外阅读情况,学校从高二年级四个班的182人中随机抽取30人了解情况,若用系统抽样的方法,则抽样的间隔和随机剔除的个数分别为()A.6,2 B.2,3C.2,60 D.60,22.已知分别是等差数列的前项和,且,则()A. B.C. D.3.设等差数列的前项和为,已知,,则的公差为()A.2 B.3C.4 D.54.若是函数的一个极值点,则的极大值为()A. B.C. D.5.已知复数满足,其中为虚数单位,则的共轭复数为()A. B.C. D.6.如图,我市某地一拱桥垂直轴截面是抛物线,已知水利人员在某个时刻测得水面宽,则此时刻拱桥的最高点到水面的距离为()A. B.C. D.7.已知函数,则的单调递增区间为().A. B.C. D.8.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C.与相等 D.9.在平面直角坐标系中,已知椭圆的上、下顶点分别为、,左顶点为,左焦点为,若直线与直线互相垂直,则椭圆的离心率为A. B.C. D.10.已知椭圆与圆在第二象限的交点是点,是椭圆的左焦点,为坐标原点,到直线的距离是,则椭圆的离心率是()A. B.C. D.11.等比数列的各项均为正数,且,则A. B.C. D.12.已知直线l:的倾斜角为,则()A. B.1C. D.-1二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的渐近线方程是____________14.函数的图象在点P()处的切线方程是,则_____15.过点作圆的切线,则切线方程为______.16.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第七个孩子分得斤数为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知在△中,角A,B,C的对边分别是a,b,c,且.(1)求角C的大小;(2)若,求△的面积S的最大值.18.(12分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形(1)证明:是中点;(2)求点到平面的距离19.(12分)如图,在正方体中,E,F,G,H,K,L分别是AB,,,,,DA各棱的中点.(1)求证:E,F,G,H,K,L共面:(2)求证:平面EFGHKL;(3)求与平面EFGHKL所成角的余弦值.20.(12分)已知双曲线的渐近线方程为,且过点(1)求双曲线的方程;(2)过双曲线的一个焦点作斜率为的直线交双曲线于两点,求弦长21.(12分)已知函数()(1)讨论函数的单调区间;(2)若有两个极值点,(),且不等式恒成立,求实数m的取值范围22.(10分)已知函数的图象在点P(0,f(0))处的切线方程是(1)求a、b的值;(2)求函数的极值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据系统抽样的方法即可求解.【详解】从人中抽取人,除以,商余,故抽样的间隔为,需要随机剔除人.故选:A.2、D【解析】利用及等差数列的性质进行求解.【详解】分别是等差数列的前项和,故,且,故,故选:D3、B【解析】由以及等差数列的性质,可得的值,再结合即可求出公差.【详解】解:,得,,又,两式相减得,则.故选:B.4、D【解析】先对函数求导,由已知,先求出,再令,并判断函数在其左右两边的单调性,从而确定极大值点,然后带入原函数即可完成求解.【详解】因为,,所以,所以,,令,解得或,所以当,,单调递增;时,,单调递减;当,,单调递增,所以的极大值为故选:D5、D【解析】由复数除法求得后可得其共轭复数【详解】由题意,∴故选:D6、D【解析】代入计算即可.【详解】设B点的坐标为,由抛物线方程得,则此时刻拱桥的最高点到水面的距离为2米.故选:D7、D【解析】利用导数分析函数单调性【详解】的定义域为,,令,解得故的单调递增区间为故选:D8、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D9、C【解析】依题意,直线与直线互相垂直,,,故选10、B【解析】连接,得到,作,求得,利用椭圆的定义,可求得,在直角中,利用勾股定理,整理的,即可求解椭圆的离心率.【详解】如图所示,连接,因为圆,可得,过点作,可得,且,由椭圆的定义,可得,所以,在直角中,可得,即,整理得,两侧同除,可得,解得或,又因为,所以椭圆的离心率为.故选:B【点睛】本题主要考查了椭圆的定义,直角三角形的勾股定理,以及椭圆的离心率的求解,其中解答中熟记椭圆的定义,结合直角三角形的勾股定理,列出关于的方程是解答的关键,着重考查了推理与计算能力,属于基础题.11、B【解析】根据等比数列的性质,结合已知条件,求得,进而求得的值.【详解】由于数列是等比数列,故,所以,故.故选B.【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.12、A【解析】由倾斜角求出斜率,列方程即可求出m.【详解】因为直线l的倾斜角为,所以斜率.所以,解得:.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由双曲线的方程可知,,即可直接写出其渐近线的方程.【详解】由双曲线的方程为,可知,;则双曲线的渐近线方程为.故答案:.14、【解析】根据导数的几何意义,结合切线方程,即可求解.【详解】根据导数的几何意义可知,,且,所以.故答案为:15、【解析】求出切点与圆心连线的斜率后可得切线方程.【详解】因为点在圆上,故切线必垂直于切点与圆心连线,而切点与圆心连线的斜率为,故切线的斜率为,故切线方程为:即.故答案为:.16、167【解析】由题设知8个孩子分得斤数是公差为17的等差数列,设第一个孩子分得斤,应用等差数列前n项和公式求,进而由等差数列通项公式求即可.【详解】由题意,设第一个孩子分得斤,则,所以,可得,故斤.故答案为:167.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由正弦定理、和角正弦公式及三角形内角的性质可得,进而可得C的大小;(2)由余弦定理可得,根据基本不等式可得,由三角形面积公式求面积的最大值,注意等号成立条件.【小问1详解】由正弦定理知:,∴,又,∴,则,故.【小问2详解】由,又,则,∴,当且仅当时等号成立,∴△的面积S的最大值为.18、(1)证明见解析;(2).【解析】(1)证明出平面,可得出,再利用等腰三角形的几何性质可证得结论成立;(2)计算出三棱锥的体积以及的面积,利用等体积法可求得点到平面的距离.【小问1详解】证明:在正三棱柱,平面,平面,则,因为是以为直角顶点的等腰直角三角形,则,,则平面,平面,所以,,因为为等边三角形,故点为的中点.【小问2详解】解:因为是边长为的等边三角形,则,平面,平面,则,即,所以,,,,设点到平面的距离为,,,解得.因此,点到平面距离为.19、(1)证明见解析;(2)证明见解析;(3).【解析】建立空间直角坐标系,求出各点的坐标;(1)用向量的坐标运算证明向量共面,进而证明点共面;(2)利用向量的数量积的坐标运算证明,即可;(3)确定平面EFGHKL的一个法向量,利用空间角度的向量计算公式求得答案.【小问1详解】证明:以D为原点,分别以DA,DC,所在直线为x,y,z轴建立空间直角坐标系,不妨设正方体的棱长为2.则,,,,,,,.可得,,,,,.可得,,,,,所以,,,,共面,又它们过同一点E,所以E,F,G,H,K,L共面.【小问2详解】证明:由(1)得,,又故,,又,所以平面LEF,即平面EFGHKL.【小问3详解】由(2)知,是平面EFGHKL的一个法向量,设与平面EFGHKL所成角为,,,.所以,所以与平面EFGHKL所成角的余弦值为.20、(1);(2).【解析】(1)根据双曲线渐近线斜率、双曲线过点可构造方程求得,由此可得双曲线方程;(2)由双曲线方程可得焦点坐标,由此可得方程,与双曲线方程联立后,利用弦长公式可求得结果.【小问1详解】由双曲线方程知:渐近线斜率,又渐近线方程为,;双曲线过点,;由得:,双曲线的方程为:;【小问2详解】由(1)得:双曲线的焦点坐标为;若直线过双曲线的左焦点,则,由得:;设,,则,;由双曲线对称性可知:当过双曲线右焦点时,;综上所述:.21、(1)时,在递增,时,在递减,在递增(2)【解析】(1)求出函数导数,分和两种情况讨论可得单调性;(2)根据导数可得有两个极值点等价于有两不等实根,则可得出,进而得出,可得恒成立,等价于,构造函数求出最小值即可.【小问1详解】的定义域是,,①时,,则,在递增;②时,令,解得,令,解得,故在递减,在递增.综上,时,在递增时,在递减,在递增【小问2详解】,定义域是,有2个极值点,,即,则有2个不相等实数根,,∴,,解得,且,,从而,由不等式恒成立,得恒成立,令,当时,恒成立,故函数在上单调递减,∴,故实数m的取值范围是【点睛】关键点睛:本题考查利用导数解决不等式的恒成立问题,解题的关键是将有两个极值点等价于有两不等实根,以此求出,再

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论