2025届山东省临沭县数学高二上期末质量跟踪监视模拟试题含解析_第1页
2025届山东省临沭县数学高二上期末质量跟踪监视模拟试题含解析_第2页
2025届山东省临沭县数学高二上期末质量跟踪监视模拟试题含解析_第3页
2025届山东省临沭县数学高二上期末质量跟踪监视模拟试题含解析_第4页
2025届山东省临沭县数学高二上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山东省临沭县数学高二上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为A.2 B.3C.4 D.52.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(爵位依次变低)5个人共出100钱,按照爵位从高到低每人所出钱数成递增的等差数列,这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为()A.14 B.16C.18 D.203.设等差数列的前n项和为,若,,则()A.60 B.80C.90 D.1004.倾斜角为45°,在y轴上的截距为2022的直线方程是()A. B.C. D.5.已知直线在两个坐标轴上的截距之和为7,则实数m的值为()A.2 B.3C.4 D.56.已知数列的前项和为,满足,,,则()A. B.C.,,成等差数列 D.,,成等比数列7.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.即不充分也不必要条件8.在四棱锥P-ABCD中,底面ABCD,,,点E为PA的中点,,,,则点B到平面PCD的距离为()A. B.C. D.9.已知椭圆:的左、右焦点分别为,,下顶点为,直线与椭圆的另一个交点为,若为等腰三角形,则椭圆的离心率为()A. B.C. D.10.在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,点E是棱PC的中点,作,交PB于F.下面结论正确的个数为()①∥平面EDB;②平面EFD;③直线DE与PA所成角为60°;④点B到平面PAC的距离为.A.1 B.2C.3 D.411.如果双曲线的一条渐近线方程为,且经过点,则双曲线的标准方程是()A. B.C. D.12.若直线l与椭圆交于点A、B,线段的中点为,则直线l的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用组成所有没有重复数字的五位数中,满足与相邻并且与不相邻的五位数共有____________个.(结果用数值表示)14.已知圆锥的高为,体积为,则以该圆锥的母线为半径的球的表面积为______________.15.不等式是的解集为______16.经过点且与双曲线有公共渐近线的双曲线方程为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆过,两点,为坐标原点(1)求椭圆的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点,,且?若存在,写出该圆的方程,并求的取值范围;若不存在,说明理由18.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.19.(12分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由20.(12分)已知三棱柱中,.(1)求证:平面平面.(2)若,在线段上是否存在一点使平面和平面所成角的余弦值为若存在,确定点的位置;若不存在,说明理由.21.(12分)已知曲线:.(1)若曲线是双曲线,求的取值范围;(2)设,已知过曲线的右焦点,倾斜角为的直线交曲线于A,B两点,求.22.(10分)在平面直角坐标系中,圆C:,直线l:(1)若直线l与圆C相切于点N,求切点N的坐标;(2)若,直线l上有且仅有一点A满足:过点A作圆C的两条切线AP、AQ,切点分别为P,Q,且使得四边形APCQ为正方形,求m的值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.2、B【解析】由题可知这是一个等差数列,前项和,,列式求基本量即可.【详解】设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:B3、D【解析】由题设条件求出,从而可求.【详解】设公差为,因为,,故,解得,故,故选:D.4、A【解析】根据直线斜率与倾斜角的关系,结合直线斜截式方程进行求解即可.【详解】因为直线的倾斜角为45°,所以该直线的斜率为,又因为该直线在y轴上的截距为2022,所以该直线的方程为:,故选:A5、C【解析】求出直线方程在两坐标轴上的截距,列出方程,求出实数m的值.【详解】当时,,故不合题意,故,,令得:,令得:,故,解得:.故选:C6、C【解析】写出数列前几项,观察规律,找到数列变化的周期,再依次去判断各项的说法即可解决.【详解】数列中,,,,则此数列为1,2,2,1,,,1,2,2,1,,,1,2,2,1,,,…即数列的各项是周期为6数值循环重复的一列数,选项A:,,则.判断错误;选项B:由,可知当时,.判断错误;选项C:,则,即,,成等差数列.判断正确;选项D:,,则,,即,,不能构成等比数列.判断错误.故选:C7、D【解析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.8、D【解析】为中点,连接,易得为平行四边形,进而可知B到平面PCD的距离即为到平面PCD的距离,再由线面垂直的性质确定线线垂直,在直角三角形中应用勾股定理求相关线段长,即可得△为直角三角形,最后应用等体积法求点面距即可.【详解】若为中点,连接,又E为PA的中点,所以,,又,,则且,所以为平行四边形,即,又面,面,所以面,故B到平面PCD的距离,即为到平面PCD的距离,由底面ABCD,面ABCD,即,,,又,即,,则面,面,即,而,,,,易知:,在△中;在△中;在△中;综上,,故,又,则.所以B到平面PCD的距离为.故选:D9、B【解析】由椭圆定义可得各边长,利用三角形相似,可得点坐标,再根据点在椭圆上,可得离心率.【详解】如图所示:因为为等腰三角形,且,又,所以,所以,过点作轴,垂足为,则,由,,得,因为点在椭圆上,所以,所以,即离心率,故选:B.10、D【解析】①由题意连接交于,连接,则是中位线,证出,由线面平行的判定定理知∥平面;②由底面,得,再由证出平面,即得,再由是正方形证出平面,则有,再由条件证出平面;③根据边长证明△DEO是等边三角形即可;④根据等体积法即可求.【详解】①如图所示,连接交于点,连接底面是正方形,点是的中点在中,是中位线,而平面且平面,∥平面;故①正确;②如图所示,底面,且平面,,,是等腰直角三角形,又是斜边的中线,(*),由底面,得,底面是正方形,,又,平面,又平面,(**),由(*)和(**)知平面,而平面,又,且,平面;故②正确;③如图所示,连接AC交BD与O,连接OE,由OE是三角形PAC中位线知OE∥PA,故∠DEO为异面直线PA和DE所成角或其补角,由②可知DE=,OD=,OE=,∴△DEO是等边三角形,∴∠DEO=60°,故③正确;④如图所示,设B到平面PAC的距离为d,由题可知PA=AC=PC=,故,由.故④正确.故正确的有:①②③④,正确的个数为4.故选:D.11、D【解析】根据渐近线方程设出双曲线方程,然后将点代入,进而求得答案.【详解】因为双曲线的一条渐近线方程为,所以设双曲线方程为,将代入得:,即双曲线方程为.故选:D.12、A【解析】用点差法即可获解【详解】设.则两式相减得即因为,线段AB的中点为,所以所以所以直线的方程为,即故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意,先利用捆绑法排列和,再利用插空法排列和,即可得答案.【详解】因为满足与相邻并且与不相邻,则将捆绑,内部排序得,再对和全排列得,利用插空法将和插空得,所以满足题意得五位数有.故答案为:14、【解析】利用圆锥体积公式可求得圆锥底面半径,利用勾股定理可得母线长;根据球的表面积公式可求得结果.【详解】设圆锥的底面半径为,母线长为,圆锥体积,,,以为半径的球的表面积.故答案为:.15、【解析】由可得,结合分式不等式的解法即可求解.【详解】由可得,整理可得:,则,解可得:.所以不等式是的解集为:.故答案为:.16、【解析】由题意设所求双曲线的方程为,∵点在双曲线上,∴,∴所求的双曲线方程为,即答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,,【解析】(1)根据椭圆E:()过,两点,直接代入方程解方程组,解方程组即可.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,当切线斜率存在时,设该圆的切线方程为,联立,根据,结合韦达定理运算,同时满足,则存在,否则不存在;在该圆的方程存在时,利用弦长公式结合韦达定理得到,结合题意求解即可,当切线斜率不存在时,验证即可.【小问1详解】将,的坐标代入椭圆的方程得,解得,所以椭圆的方程为【小问2详解】假设满足题意的圆存在,其方程为,其中,设该圆的任意一条切线和椭圆交于,两点,当直线的斜率存在时,令直线的方程为,①将其代入椭圆的方程并整理得,由韦达定理得,,②因为,所以,③将①代入③并整理得,联立②得,④因为直线和圆相切,因此,由④得,所以存在圆满足题意当切线的斜率不存在时,易得,由椭圆方程得,显然,综上所述,存在圆满足题意当切线的斜率存在时,由①②④得,由,得,即当切线的斜率不存在时,易得,所以综上所述,存在圆心在原点的圆满足题意,且18、(1)0.006;(2);(3).【解析】(1)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(2)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(3)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.【详解】(1)因为,所以(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为(3)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×10=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为【点睛】本题考查频率分布直方图、概率与频率关系、古典概型,属中档题;利用频率分布直方图解题的时,注意其表达的意义,同时要理解频率是概率的估计值这一基础知识;在利用古典概型解题时,要注意列出所有的基本事件,千万不可出现重、漏的情况.19、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线的定义进行求解即可;(2)设出直线l的方程与双曲线的方程联立,利用一元二次方程根与系数关系,结合平面向量数量积的坐标表示公式进行求解判断即可.【小问1详解】设圆E的圆心为,半径为r,则,,所以由双曲线定义可知,E的轨迹是以M,N为焦点、实轴长为6的双曲线的右支,所以动圆的圆心E的轨迹方程为,;【小问2详解】设,,直线l的方程为由得,且,故又,所以又,,所以,即.又故或若,则直线l的方程为,过点,与题意矛盾,所以,故,所以直线l的方程为,过点【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.20、(1)证明见解析;(2)在线段上存在一点,且P是靠近C的四等分点.【解析】(1)连接,根据给定条件证明平面得即可推理作答.(2)在平面内过C作,再以C为原点,射线CA,CB,Cz分别为x,y,z轴正半轴建立空间直角坐标系,利用空间向量计算判断作答.【小问1详解】在三棱柱中,四边形是平行四边形,而,则是菱形,连接,如图,则有,因,,平面,于是得平面,而平面,则,由得,,平面,从而得平面,又平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论