版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题27统计(10个高频考点)(强化训练)【考点1统计调查的概念辨析】1.(2022·云南·统考中考真题)下列说法正确的是(
)A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360°是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为S甲2、S乙2.若D.一个抽奖活动中,中奖概率为120【答案】C【分析】根据题意抽样调查、必然事件、方差及概率的定义即可依次判断.【详解】A.为了解三名学生的视力情况,采用全面调查,故错误;B.在平面内,任意画一个三角形,其内角和是180°是必然事件,故错误;C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为S甲2、S乙2.若D.一个抽奖活动中,中奖概率为120故选C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知抽样调查、必然事件、方差及概率的定义.2.(2022·四川内江·中考真题)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是(
)A.这1000名考生是总体的一个样本 B.近4万名考生是总体C.每位考生的数学成绩是个体 D.1000名学生是样本容量【答案】C【分析】根据总体、个体、样本、样本容量的定义对各选项判断即可.【详解】解:A、1000名考生的数学成绩是样本,故本选项错误;B、4万名考生的数学成绩是总体,故本选项错误;C、每位考生的数学成绩是个体,故本选项正确;D、1000是样本容量,故本选项错误.故选C.3.(2009·辽宁大连·中考真题)下列的调查中,选取的样本具有代表性的有(
)A.为了解某地区居民的防火意识,对该地区的初中生进行调查B.为了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查C.为了解某商场的平均晶营业额,选在周末进行调查D.为了解全校学生课外小组的活动情况,对该校的男生进行调查【答案】B【详解】解:A,C,D中进行抽查,对抽取的对象划定了范围,因而不具有代表性.B中为了了解某校1200名学生的视力情况,随机抽取该校120名学生进行调查就具有代表性.故选B.4.(2008·安徽芜湖·中考真题)为了解2008年6月1日“限塑令”实施情况,当天某环保小组对3600户购物家庭随机抽取600户进行调查,发现其中有156户使用了环保购物袋购物,据此可估计该3600户购物家庭当日使用环保购物袋约有()A.936户 B.388户 C.1661户 D.1111户【答案】A【详解】由题意得:156600故选A.5.(2022·广西柳州·统考中考真题)为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A.14% B.16% C.20% D.50%【答案】D【分析】根据条形统计图中的数据,可以计算出一天锻炼时间为1小时的人数占全班人数的百分比,从而可以解答本题.【详解】解:由题意可得,25÷(8+25+10+7)×100%=0.5×100%=50%,即一天锻炼时间为1小时的人数占全班人数的50%,故选:D.【点睛】本题考查样本估计总体,从条形统计图中读取信息是解题的关键.【考点2从统计图获取信息】6.(2022·河南·统考中考真题)如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为(
)A.5分 B.4分 C.3分 D.45%【答案】B【分析】根据扇形统计图中得分情况的所占比多少来判断即可;【详解】解:由扇形统计图可知:1分所占百分比:5%;2分所占百分比:10%;3分所占百分比:25%;4分所占百分比:45%;5分所占百分比:15%;可知,4分所占百分比最大,故4分出现的次数最多,∴所打分数的众数为4;故选:B.【点睛】本题主要考查众数的概念,扇形统计图,理解扇形统计图中最大百分比是所打分数的众数,这是解本题的关键.7.(2022·山东济宁·统考中考真题)某班级开展“共建书香校园”读书活动.统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图.则下列说法正确的是(
)A.从2月到6月,阅读课外书的本数逐月下降B.从1月到7月,每月阅读课外书本数的最大值比最小值多45C.每月阅读课外书本数的众数是45D.每月阅读课外书本数的中位数是58【答案】D【分析】根据折线统计图的变化趋势即可判断A,根据折线统计图中的数据以及众数的定义,中位数的定义即可判断B,C,D选项.【详解】A.从2月到6月,阅读课外书的本数有增有降,故该选项不正确,不符合题意;B.从1月到7月,每月阅读课外书本数的最大值为78比最小值28多50,故该选项不正确,不符合题意;C.每月阅读课外书本数的众数是58,故该选项不正确,不符合题意;D.这组数据为:28,33,45,58,58,72,78,则每月阅读课外书本数的中位数是58,故该选项正确,符合题意;故选D【点睛】本题考查了折线统计图,求极差,求中位数,从统计图获取信息是解题的关键.8.(2022·湖南永州·统考中考真题)小聪,小玲,小红三人参加“普法知识竞赛”,其中前5题是选择题,每题10分,每题有A、B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案(按1~5题的顺序排列)是_______题号答案选手12345得分小聪BAABA40小玲BABAA40小红ABBBA30【答案】BABBA.【详解】试题分析:根据得分可得小聪和小玲都是只有一个错,小红有2个错误.第5题,三人选项相同,若不是选A,则小聪和小玲的其它题目的答案一定相同,与已知矛盾,则第5题的答案是A;第3个第4题小聪和小玲都不同,则一定在这两题上其中一人有错误,则第1,2正确,则1的答案是:B,2的答案是:A;则小红的错题是1和2,则3和4正确,则3的答案是:B,4的答案是:B.总之,正确答案(按1~5题的顺序排列)是BABBA.考点:推理与论证.9.(2022·湖南岳阳·统考中考真题)聚焦“双减”政策落地,凸显寒假作业特色.某学校评选出的寒假优质特色作业共分为四类:A(节日文化篇),B(安全防疫篇),C(劳动实践篇),D(冬奥运动篇)下面是根据统计结果绘制的两幅不完整的统计图,则B类作业有______份.【答案】20【分析】由条形统计图可得A,C,D类作业分别有25份,30份,25份,由扇形统计图可得C类作业份数占总份数的30%,可得总份数为100份,减去A,C,D【详解】解:∵C类作业有30份,且C类作业份数占总份数的30%∴总份数为:30÷30%∵A,D类作业分别有25份,25份,∴B类作业的份数为:100−25−30−25=20(份).故答案为:20.【点睛】本题考查条形统计图,扇形统计图,解题的关键是能够根据统计图提取所需信息.10.(2022·江苏南京·中考真题)下面是某市2013~2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是_________年,私人汽车拥有量年增长率最大的是_________年.【答案】
2016
2015【分析】直接利用条形统计图以及折线统计图分别分析得出答案.【详解】由条形统计图可得:该市私人汽车拥有量年净增量最多的是2016年,净增183150=33(万辆),由折线统计图可得,私人汽车拥有量年增长率最大的是:2015年.故答案为:2016,2015.【点睛】此题主要考查了折线统计图以及条形统计图的应用,正确利用图形获取信息是解题关键.【考点3统计图的选择】11.(2022·上海·统考中考真题)我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是()A.条形图 B.扇形图C.折线图 D.频数分布直方图【答案】B【分析】根据统计图的特点判定即可.【详解】解:统计图中,能凸显由数据所表现出来的部分与整体的关系的是扇形图.故选:B.【点睛】本题考查了统计图的特点,条件统计图能反映各部分的具体数值,扇形统计图能反映各个部分占总体的百分比,折线统计图能反映样本或总体的趋势,频数分布直方图能反映样本或总体的分布情况,熟练掌握各统计图的特点是解题的关键.12.(2022·湖南郴州·中考真题)要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图 B.扇形统计图C.折线统计图 D.频数分布统计图【答案】C【详解】根据题意,要求直观反映长沙市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:C.13.(2022·湖南张家界·一模)对江山实验中学七2班(全班共50人)的学生进行调查“你最喜欢的球类运动”中,发现有16人最喜欢打乒乓球,有12人最喜欢打排球,有22人最喜欢踢足球,为了清楚地表示爱好各种球类活动的人数占全班人数的百分比,最合适的统计图是(
)A.扇形统计图 B.折线统计图 C.条形统计图 D.以上都可以【答案】A【分析】根据扇形统计图、折线统计图、条形统计图各自的特点结合题目即可判断.【详解】解:根据统计图的特点:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.本题要求直观反映爱好各种球类活动的人数占全班人数的百分比,应选择扇形统计图.故选A.【点睛】本题考查了统计图的选择,熟练掌握三种统计图的特点是解题的关键.14.(2022·河北唐山·统考一模)下列四个统计图中,用来表示不同品种的奶牛的日平均产奶量最为合适的是(
)A. B.C. D.【答案】D【分析】此题根据扇形统计图、折线统计图、条形统计图各自的特点来判断.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:A.扇形统计图可以直接看出各个奶牛产量的比例,但不能直接看到各个奶牛的产量,故此项不合适;B.图中的奶牛瓶这样一个立体物显示,容易使人们从体积的角度比较这几种不同品种奶牛的平均产奶量,从而扩大了它们的差距,是不合适的;C.折线统计图表示的是事物的变化情况,但不适合统计不同品种奶牛的平均产奶量,故此项不合适;D.条形统计图能清楚地表示出每个项目的具体数目,用来表示不同品种的奶牛的日平均产奶量最为合适.故选D.【点睛】本题考查的是统计图的选择,本题解题的关键是区分各个统计图的特点.15.(2022·广西南宁·校考二模)某地区元月份连续七天的空气质量指数(AQI)分别为:118,96,60,82,56,69,86.为了反映这七天空气质量的变化情况,最直观的表示方法是()A.统计表 B.条形统计图 C.扇形统计图 D.折线统计图【答案】D【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:为了反映这七天空气质量的变化情况,最直观的表示方法是用折线统计图,故选:D.【点睛】本题考查了统计图的选择,关键是根据扇形统计图、折线统计图、条形统计图各自的特点来判断.【考点4频率分布表】16.(2022·贵州遵义·统考中考真题)2021年7月,中共中央办公厅、国务院办公厅印发《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》,明确要求初中生每天的书面作业时间不得超过90分钟.某校随机抽取部分学生进行问卷调查,并将调查结果制成如下不完整的统计图表.则下列说法不正确的是(
)作业时间频数分布组别作业时间(单位:分钟)频数A60<t≤708B70<t≤8017C80<t≤90mDt>905作业时间扇形统计图A.调查的样本容量是为50B.频数分布表中m的值为20C.若该校有1000名学生,作业完成的时间超过90分钟的约100人D.在扇形统计图中B组所对的圆心角是144°【答案】D【分析】根据扇形统计图中D组的占比和频数分布表中D组的频数即可求得样本容量,进而判断A选项,进而判断B选项,根据1000乘以D组的占比即可判断C,根据B组的频数除以总数再乘以360度即可判断D选项即可求解.【详解】解:A.调查的样本容量是为510B.频数分布表中m的值为50−8−17−5=20,故该选项正确,不符合题意;C.若该校有1000名学生,作业完成的时间超过90分钟的约1000×10%D.在扇形统计图中B组所对的圆心角是1750故选D.【点睛】本题考查了频数分布表,扇形统计图,求样本的容量,样本估计总体,从统计图表中获取信息是解题的关键.17.(2022·江苏镇江·中考真题)(2022江苏省镇江市)根据下表中的信息解决问题:若该组数据的中位数不大于38,则符合条件的正整数a的取值共有()A.3个 B.4个 C.5个 D.6个【答案】C【分析】假设a的值,找到符合中位数不大于38的条件,进而找出a值的个数.【详解】解:当a=1时,有19个数据,最中间是:第10个数据,则中位数是38;当a=2时,有20个数据,最中间是:第10和11个数据,则中位数是38;当a=3时,有21个数据,最中间是:第11个数据,则中位数是38;当a=4时,有22个数据,最中间是:第11和12个数据,则中位数是38;当a=5时,有23个数据,最中间是:第12个数据,则中位数是38;当a=6时,有24个数据,最中间是:第12和13个数据,则中位数是38.5;故该组数据的中位数不大于38,则符合条件的正整数a的取值共有:5个.故选:C.【点睛】此题主要考查了中位数以及频数分布表,正确把握中位数的定义是解题关键.18.(2005·江苏常州·中考真题)将100个数据分成8个组,如下表:组号12345678频树1114121313x1210则第六组的频数为()A.12 B.13 C.14 D.15【答案】D【详解】解:根据统计表中,各组频数之和为样本容量,可得第六组的频数为10011141213131210=15;故选D19.(2022·广东梅州·中考真题)我市某校开展了以“梦想中国”为主题的摄影大赛,要求参赛学生每人交一件作品.现将从中挑选的50件参赛作品的成绩(单位:分)统计如下:等级成绩(用m表示)频数频率A90≤m≤100x0.08B80≤m<9034yCm<80120.24合计501请根据上表提供的信息,解答下列问题:(1)表中x的值为_____________,y的值为______________;(直接填写结果)(2)将本次参赛作品获得A等级的学生依次用A1、A2、A3……表示.现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,则恰好抽到学生A1和A2的概率为____________.(直接填写结果)【答案】(1)x=4,y=0.68;(2)1【分析】(1)根据频数总和和频率得出x的值,根据频数和样本容量得出y的值;(2)首先得出所有可能出现的情况,然后得出概率.【详解】解:(1)x=0.08×50=4,y=34(2)A等级共有4人,抽取两名学生,可能的结果有:A1A2,A1A3,A1A4,A2A3,A2A4,A3A4,共6种可能,恰好抽到学生A1和A2的概率为16考点:(1)频率的计算;(2)概率的计算20.(2022·上海·中考真题)某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值),结合表的信息,可测得测试分数在80~90分数段的学生有________名.【答案】150【分析】首先求得80~90分数段的频率,然后用总人数乘以该组频率即可求得该分数段的人数.【详解】80~90分数段的频率为:10.20.250.25=0.3,故该分数段的人数为:500×0.3=150人.故答案为150.【考点5频率分布直方图】21.(2022·上海·统考中考真题)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值)(01小时4人,12小时10人,23小时14人,34小时16人,45小时6人),若共有200名学生,则该学校六年级学生阅读时间不低于3小时的人数是_____.【答案】88【分析】由200乘以样本中不低于3小时的人数的百分比即可得到答案.【详解】解:该学校六年级学生阅读时间不低于3小时的人数是16+64+10+14+16+6故答案为:88【点睛】本题考查的是利用样本估计总体,求解学生阅读时间不低于3小时的人数的百分比是解本题的关键.22.(2022·内蒙古鄂尔多斯·统考中考真题)为了调查九年级学生寒假期间平均每天观看冬奥会时长情况,随机抽取部分学生进行调查,根据收集的数据绘制了如图所示两幅不完整的统计图“平均每天观看冬奥会时长”频数分布表观看时长(分)频数(人)频率0<x≤1520.0515<x≤3060.1530<x≤4518a45<x≤600.2560<x≤7540.1(1)频数分布表中,a=,请将频数分布直方图补充完整;(2)九年级共有520名学生,请你根据频数分布表,估计九年级学生平均每天观看冬奥会时长超过60分钟的有人;(3)校学生会拟在甲、乙、丙、丁四名同学中,随机抽取两名同学做“我与冬奥”主题演讲,请用树状图或列表法求恰好抽到甲、乙两名同学的概率.【答案】(1)0.45,见解析(2)52(3)1【分析】(1)根据0<x≤15的频数与频率,求出调查的总人数,再用30<x≤45的频数除以总人数,求出a,然后求出45<x≤60的频数,从而补全统计图;(2)用总人数乘以平均每天观看冬奥会时长超过60分钟的人数所占的百分比即可;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到甲、乙两名同学的情况,再利用概率公式即可求得答案.【详解】(1)解:调查的总人数有:2÷0.05=40(人),a=184045<x≤60的人数有:40×0.25=10(人),补全统计图如下:(2)解:估计九年级学生平均每天观看冬奥会时长超过60分钟的有:520×0.1=52(人);故答案为:52.(3)解:画树状图得:∵共有12种情况,恰好抽到甲、乙两名同学的是2种,∴P(恰好抽到甲、乙两名同学)=212=1【点睛】本题主要考查了列表法或树状图法求概率以及频数分布直方图的知识.掌握“概率=所求情况数与总情况数之比”是解答本题的关键.23.(2022·山东日照·统考中考真题)今年是中国共产主义青年团成立100周年,某校组织学生观看庆祝大会实况并进行团史学习.现随机抽取部分学生进行团史知识竞赛,并将竞赛成绩(满分100分)进行整理(成绩得分用a表示),其中60≤a<70记为“较差”,70≤a<80记为“一般”,80≤a<90记为“良好”,90≤a≤100记为“优秀”,绘制了不完整的扇形统计图和频数分布直方图.请根据统计图提供的信息,回答如下问题:(1)x=________,y=________,并将直方图补充完整;(2)已知90≤a≤100这组的具体成绩为93,94,99,91,100,94,96,98,则这8个数据的中位数是________,众数是________;(3)若该校共有1200人,估计该校学生对团史掌握程度达到优秀的人数;(4)本次知识竞赛超过95分的学生中有3名女生,1名男生,现从以上4人中随机抽取2人去参加全市的团史知识竞赛,请用列表或画树状图的方法,求恰好抽中2名女生参加知识竞赛的概率.【答案】(1)30%,16%,图见解析(2)95、94(3)192人(4)1【分析】(1)先求出被调查的总人数,继而可求得y、x的值;(2)将数据重新排列,再根据中位数和众数的概念求解即可;(3)用总人数乘以样本中优秀人数所占百分比即可;(4)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】(1)解:被调查的总人数为4÷8%=50(人),∴优秀对应的百分比y=8则一般对应的人数为50(4+23+8)=15(人),∴其对应的百分比x=15补全图形如下:故答案为:30%,16%.(2)解:将这组数据重新排列为91,93,94,94,96,98,99,100,所以其中位数为94+962故答案为:95,94;(3)解:估计该校学生对团史掌握程度达到优秀的人数为1200×16%=192(人);答:估计该校学生对团史掌握程度达到优秀的人数为192人.(4)解:画树状图为:共有12种等可能情况,其中被抽取的2人恰好是女生的有6种结果,所以恰好抽中2名女生参加知识竞赛的概率为612【点睛】此题考查了用列表法或树状图法求概率、频数分布直方图、扇形统计图、众数、中位数、用样本估计总体等知识,数形结合与用列表法或树状图法求概率是解题的关键.24.(2022·四川绵阳·统考中考真题)目前,全球淡水资源分布不均、总量不足是人类面临的共同问题,某市在实施居民用水定额管理前,通过简单随机抽样对居民生活用水情况进行了调查,获得了若干个家庭去年的月均用水量数据(单位:t),整理出了频数分布表,频数分布直方图和扇形统计图,部分信息如下:月均用水量(t)2≤x<3.53.5≤x<55≤x<6.56.5≤x<88≤x<9.5频数76对应的扇形区域ABCDE根据以上信息,解答下列问题:(1)补全频数分布直方图,并求出扇形图中扇形E对应的圆心角的度数;(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使该市60%的家庭水费支出不受影响,你觉得家庭月均用水量应该定为多少?并说明理由.【答案】(1)频数分布直方图见解析,E对应的圆心角的度数为:14.4°(2)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,理由见解析【分析】(1)根据题A的频数和百分比得到抽取的总数,进而求得B、C的频数即可补全频数分布直方图,求出E的频数,360°乘以E所占的比例即可求解;(2)由于50×60%=30,所以为了鼓励节约用水,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而7+23=30,故家庭月均用水量应该定为5吨.【详解】(1)抽取的总数为:7÷14%=50,B的频数为:50×46%=23,C的频数为:50×24%=12,频数分布直方图如下:扇形图中扇形E对应的圆心角的度数为:360°×2(2)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,理由如下:因为月平均用水量不超过5吨的有7+23=30(户),30÷50=60%.【点睛】本题考查了读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.(2022·广东广州·统考中考真题)某校在九年级学生中随机抽取了若干名学生参加“平均每天体育运动时间”的调查,根据调查结果绘制了如下不完整的频数分布表和频数分布直方图.频数分布表运动时间t/min频数频率30≤t<6040.160≤t<9070.17590≤t<120a0.35120≤t<15090.225150≤t<1806b合计n1请根据图表中的信息解答下列问题:(1)频数分布表中的a=________,b=________,n=________;(2)请补全频数分布直方图;(3)若该校九年级共有480名学生,试估计该校九年级学生平均每天体育运动时间不低于120min的学生人数.【答案】(1)14,0.15,40;(2)补图见解析;(3)约有180人【分析】从频数分布表中得知,频数4占比例为0.1,由此可推出样本容量是40,在求出n=40后,a和b可随之求出,继而(2)可解决;接下来,从样本去估计总体,就是(3)的结果.【详解】(1)n=4÷0.1=40a=40(4+7+6+9)=14,b=6÷40=0.15故a=14,b=0.15,n=40(2)补全频数分布直方图如下:(3)被抽到的40人中,运动时间不低于120分钟的有9+6=15人,占频率0.225+0.15=0.375,以此估计全年级480人中,大概有480×0.375=180(名).【点睛】本题主要考查了统计和概率,总体和样本;能够准确的根据频数分布表和直方图计算样本和总体的各项数据是解题的关键.【考点6频率分布折线图】26.(2022春·河北沧州·八年级统考期末)体育老师对八年级(2)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成如图所示的折线统计图.由图可知,最喜欢乒乓球的学生的频率是(
)A.0.16 B.0.24 C.0.3 D.0.45【答案】B【分析】从图中可知总人数为50人,其中最喜欢乒乓球的有12人,根据频率的计算公式进行计算即可.【详解】解:读图可知:共有(4+12+6+20+8)=50人,其中最喜欢乒乓球的有12人,故频率最喜欢篮球的频率=12÷50=0.24.故选:B.【点睛】本题考查读频数分布折线图和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,同时考查频率、频数的关系.27.(2022春·河北唐山·八年级统考期中)班主任张老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(如图).根据图中,发言次数是4次的男生、女生分别有(
)A.4人,6人 B.4人,2人 C.2人,4人 D.3人,4人【答案】B【分析】根据频数分布折线图即可直接找出发言次数是4次的男、女生的人数.【详解】根据图形可得,发言次数是4次的男生有4人,女生有2人,故选:B.【点睛】本题主要考查了频数分布折线图,能从图中读出信息是解决本题的关键.28.(2022春·江苏·八年级专题练习)为了了解中学生的体能状况,某校抽取了50名学生进行1分钟跳绳测试,将所得数据整理后,分成5组绘成了频数分布直方图,如图(图中数据含最低值不含最高值).其中前4个小组的频率依次为0.04,0.12,0.4,0.28.(1)第4组的频数是多少?(2)第5组的频率是多少?(3)哪一组的频数最大?(4)补全统计图,并绘出频数分布折线图.【答案】(1)14;(2)0.16;(3)170~180这一频数最大;(4)见解析【分析】(1)根据总人数以及第四组的频率,求解即可;(2)根据总频率为1,以及其他四组的频率即可求解;(3)观察统计图,即可求除频数最大的一组;(4)按照频数分布直方图以及频数分布折线图的画法,求解即可.【详解】解:(1)第4组的频数是0.28×50=14;(2)第5组频率为10.040.120.40.28=0.16(3)由统计图可知:170~180这一组频数最大.(4)由(1)得第四组的频数为14,补全统计图如下:频数分布折线图如图.【点睛】本题考查了对频数、频率概念的理解,读频数分布直方图的能力和利用统计图获取信息的能力,画频数分布折线图,解题的关键是理解频数、频率的概念,并从频数分布直方图的中获取相关数据.29.(2022·辽宁抚顺·九年级统考期末)一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的机会大小,某实验小组做了棋子下掷实验,实验数据如下表:实验次数20406080100120140160“兵”字面朝上频数14384752667888“兵”字面朝上频率0.70.450.630.590.520.560.55(1)请将数据表补充完整:(2)在图中画出“兵”字面朝上的频率分布折线图:(3)如果实验继续进行下去,根据上表的数据,这个实验所得频率将逐渐稳定到某一个数值附近,请你估计该随机事件在每次实验时发生的机会大小.【答案】(1)18,0.55;(2)见详解;(3)0.55【分析】(1)根据图中信息,用频数除以实验次数,得到频率,由于试验次数较多,可以用频率估计概率;(2)将频率作为纵坐标,试验次数作为横坐标,描点连线,可得折线图.(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,即可估计概率的大小.【详解】解:(1)所填数字为:40×0.45=18,66÷120=0.55;故答案为18,0.55;(2)折线图如下:(3)根据表中数据,试验频率为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55稳定在0.55左右,故估计概率的大小为:0.55.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.作图时应先描点,再连线.用到的知识点为:部分的具体数目=总体数目×相应频率.频率=所求情况数与总情况数之比.30.(2022春·八年级单元测试)如图是若干名同学在引体向上训练时一次测试成绩(个)的频数分布折线图.(1)参加这次测试共有多少名同学?(2)组中点为9个一组的频数是多少?(3)分布两端虚设的频数为零的是哪两组?【答案】(1)23;(2)10;(3)4.5~5.5,10.5~11.5.【详解】试题分析:(1)根据图中的信息,找到符合条件的数据,再进一步计算.(2)观察即可得出组中点为9个一组的频数,再除以总数即可求得频率.(3)仔细观察,即可得出正确答案.试题解析:(1)2+4+5+10+2=23名;(2)组中点为9个一组的频数是10;(3)分布两端虚设的频数为零的两组是4.5~5.5和10.5~11.5.点睛:本题考查读频数分布折线图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【考点7统计量的计算】31.(2022·四川攀枝花·统考中考真题)为深入落实“立德树人”的根本任务,坚持德、智、体、美、劳全面发展,某学校积极推进学生综合素质评价改革,某同学在本学期德智体美劳的评价得分如图所示,则该同学五项评价得分的众数,中位数,平均数分别为(
)A.8,8,8 B.7,7,7.8 C.8,8,8.6 D.8,8,8.4【答案】D【分析】先从图中读取该同学五项评价得分,再根据众数、中位数、平均数的定义,依次计算即可.【详解】解:该同学五项评价得分分别为7,8,8,9,10,出现次数最多的数是8,所以众数为8,这组数据从小到大排列后,位于中间位置的数是8,所以中位数是8,平均数为7+8+8+9+105故选:D.【点睛】本题考查了众数、中位数、平均数的定义,注意在求一组数据的中位数时,应先将这组数按从小到大或从大到小的关系排序,再求出这组数的中位数.32.(2022·山东菏泽·统考中考真题)射击比赛中,某队员的10次射击成绩如图所示,则下列结论错误的是(
)A.平均数是9环 B.中位数是9环 C.众数是9环 D.方差是0.8【答案】D【分析】分别求出平均数,中位数,众数以及方差即可求解【详解】解:根据题意得:10次射击成绩从小到大排列为8.4,8.6,8.8,9,9,9,9.2,9.2,9.4,9.4,A、平均数是110B、中位数是9+92C、9出现的次数最多,则众数是9环,故本选项正确,不符合题意;D、方差是110故选:D【点睛】本题考查了折线统计图,平均数,中位数,众数以及方差,解答本题的关键是掌握相关统计量的求法.33.(2022·贵州安顺·统考中考真题)一组数据:3,4,4,6,若添加一个数据6,则不发生变化的统计量是(
)A.平均数 B.中位数 C.众数 D.方差【答案】B【分析】根据中位数的定义即可求解.中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数.【详解】解:∵一组数据:3,4,4,6,的中位数为4+42∴不发生变化的统计量是中位数,其他统计量均会发生变化,故选B【点睛】本题考查了求中位数,掌握中位数的定义是解题的关键.34.(2022·江苏南通·统考中考真题)为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生.根据调查结果绘制了统计图表,部分图表如下:A,B两个县区的统计表平均数众数中位数A县区3.8533B县区3.8542.5(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为___________名;(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,做出判断,并说明理由.【答案】(1)3750(2)见详解【分析】(1)根据A县区统计图得不小于三天的比例,根据总数乘以比例即可得到答案;(2)根据平均数、中位数和众数的定义进行比较即可.【详解】(1)解:根据A县区统计图得,该县区八年级学生参加社会实践活动不少于3天的比例为:30%∴该县区八年级学生参加社会实践活动不少于3天的学生约为:5000×75%故答案为:3750;(2)∵A县区和B县区的平均活动天数均为3.85天,∴A县区和B县区的平均活动天数相同;∵A县区的中位数是3,B县区的中位数是2.5,∴B县区参加社会实践活动小于3天的人数比A县区多,从中位数看,A县区要好;∵A县区的众数是3,B县区的众数是4,∴A县区参加社会实践人数最多的是3天,B县区参加社会实践人数最多的是4天,从众数看,B县区要好.【点睛】本题考查数据统计、平均数、中位数和众数,解题的关键是熟练掌握扇形统计图、平均数、中位数和众数的相关知识.35.(2022·北京·统考中考真题)某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).【答案】(1)8.6(2)甲(3)丙【分析】(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲、乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲、乙、丙的平均分,再进行比较即可求解.【详解】(1)解:丙的平均数:10+10+10+9+9+8+3+9+8+1010则m=8.6.(2)s甲s乙∵s∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.(3)由题意得,去掉一个最高分和一个最低分后的平均分为:甲:8+8+9+7+9+9+9+108乙:7+7+7+9+9+10+10+108丙:10+10+9+9+8+9+8+108∵去掉一个最高分和一个最低分后丙的平均分最高,因此最优秀的是丙,故答案为:丙.【点睛】本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.【考点8统计量的选择】36.(2022·重庆·统考中考真题)每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.根据以上信息,解答下列问题:(1)填空:a=_____,b=____,c=____.(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【答案】(1)7.5,8,8;(2)200人;(3)八年级的学生成绩更优异.【分析】(1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.【详解】解:(1)由图表可得:a=7+82=7.5,b=故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为:800×5+540=200答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.【点睛】本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.37.(2022·浙江嘉兴·统考中考真题)小吴家准备购买一台电视机,小吴将收集到的某地区A、B、C三种品牌电视机销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)2014~2019年三种品牌电视机销售总量最多的是品牌,月平均销售量最稳定的是品牌.(2)2019年其他品牌的电视机年销售总量是多少万台?(3)货比三家后,你建议小吴家购买哪种品牌的电视机?说说你的理由.【答案】(1)B,C;(2)2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌(建议购买B品牌),理由见解析【分析】(1)从条形统计图、折线统计图可以得出答案;(2)求出总销售量,“其它”的所占的百分比;(3)从市场占有率、平均销售量等方面提出建议.【详解】解:(1)由条形统计图可得,2014~2019年三种品牌电视机销售总量最多的是B品牌,是1746万台;由条形统计图可得,2014~2019年三种品牌电视机月平均销售量最稳定的是C品牌,比较稳定,极差最小;故答案为:B,C;(2)∵20×12÷25%=960(万台),1﹣25%﹣29%﹣34%=12%,∴960×12%=115.2(万台);答:2019年其他品牌的电视机年销售总量是115.2万台;(3)建议购买C品牌,因为C品牌2019年的市场占有率最高,且5年的月销售量最稳定;建议购买B品牌,因为B品牌的销售总量最多,受到广大顾客的青睐.【点睛】本题考查了条形统计图,折线统计图,扇形统计图,认真审题,搞清三个统计图分别反映不同意义是解题关键.38.(2022·北京·中考真题)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲
78
86
74
81
75
76
87
70
75
90
75
79
81
70
74
80
86
69
83
77乙
93
73
88
81
72
81
94
83
77
83
80
81
70
81
73
78
82
80
70
40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,7079分为生产技能良好,6069分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【答案】a.240,b.乙;理由见解析.【详解】试题分析:(1)由表可知乙部门样本的优秀率为:1240×100%=60%,则整个乙部门的优秀率也是(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:成绩x人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400×1240b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.39.(2022·内蒙古呼伦贝尔·统考中考真题)某校九年级在“停课不停学”期间,为促进学生身体健康,布置了“云键身”任务,为了解学生完成情况,体育教师随机抽取一班与二班各10名学生进行网上视频跳绳测试,他的测试结果与分析过程如下:(1)收集数据:两班学生每分钟跳绳个数分别记录如下(二班一个数据不小心被墨水遮盖):一班:100
94
86
86
84
94
76
69
59
94二班:99
96
■
82
96
79
65
96
55
96(2)整理,描述数据:根据上面得到的两组数据,分别绘制了频数分布直方图如下:(3)分析数据:两组样本数据的平均数、众数.中位数、方差如下表所示:班级平均数众数中位数方差一班①9486147.76二班83.796②215.21根据以上数据填出表格中①,②两处的数据并补全二班的频数分布直方图;(4)得出结论:根据以上信息,判断哪班完成情况较好?说明理由(至少从两个不同角度说明判断的合理性).【答案】(3)84.2,89.补图见解析,(4)一班完成情况较好,理由见解析【分析】(3)根据平均数公式和中位数定义计算,求出二班各组人数,补全统计图即可;(4)根据两班的平均数和方差进行判断即可.【详解】解:(3)一班的平均数为100+94+86+86+84+94+76+69+59+9410二班墨水遮盖的数据为83.7×10−99−96−82−96−79−65−96−55−96=73(个),将二班的数据从小到大排列为:55,65,73,79,82,96,96,96,96,99,中间两个数据为82和96,中位数为82+962二班第二组人数为1人,第三组人数为2人,补全统计图如图所示;故答案为:84.2,89.(4)一班完成情况较好;理由是一班的平均数高于二班的平均数,而且一班的方程小于二班的方差,可以得出,一班的完成情况略高于二班,而且比二班的成绩更整齐.【点睛】本题考查了统计图表的应用和数据分析,解题关键是从统计图表中获取信息,准确应用这些信息进行计算和判断.40.(2022·浙江金华·统考中考真题)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如下测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明【答案】(1)平均数,小聪:8分;小明:8分;(2)43【分析】(1)反映一组数据的平均水平,用平均数描述;利用平均数公式求解;(2)利用方差公式求解;(3)从平均数、方差、平均数和方差综合三个方面进行分析来看.【详解】解:(1)平均数:x小聪x小明(2)S小聪(3)答案不唯一,如:①从平均数看,∵x②从方差来看,∵S③从平均数和方差来看,∵x小聪=【点睛】本题考查平均数和方差.平均数反映一组数据的平均水平.一组数据的方差越小,表明这组数据的波动越小,即这组数据越稳定.【考点9数据的波动程度】41.(2022·辽宁阜新·统考中考真题)为庆祝神舟十四号发射成功,学校开展航天知识竞赛活动.经过几轮筛选,本班决定从甲、乙、丙、丁四名同学中选择一名同学代表班级参加比赛,经过统计,四名同学成绩的平均数(单位:分)及方差(单位:分2)如表所示:甲乙丙丁平均数96989598方差20.40.41.6如果要选一名成绩好且状态稳定的同学参赛,那么应该选择(
)A.甲 B.乙 C.丙 D.丁【答案】B【分析】先比较平均数得到乙同学和丁同学成绩较好,然后比较方差得到乙同学的状态稳定,于是可决定选乙同学去参赛.【详解】解:∵乙、丁同学的平均数比甲、丙同学的平均数大,∴应从乙和丁同学中选,∵乙同学的方差比丁同学的小,∴乙同学的成绩较好且状态稳定,应选的是乙同学;故选:B【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.42.(2022·浙江嘉兴·统考中考真题)A,B两名射击运动员进行了相同次数的射击,下列关于他们射击成绩的平均数和方差的描述中,能说明A成绩较好且更稳定的是(
)A.xA>xB且sA2>C.xA<xB且sA2【答案】B【分析】根据平均数、方差的定义,平均数越高成绩越好,方差越小成绩越稳定解答即可.【详解】根据平均数越高成绩越好,方差越小成绩越稳定.故选:B.【点睛】此题考查平均数、方差的定义,解答的关键是理解平均数、方差的定义,熟知方差是衡量一组数据波动大小的量,方差越小表明该组数据分布比较集中,即波动越小数据越稳定.43.(2022·四川南充·中考真题)为了解“睡眠管理”落实情况,某初中学校随机调查50名学生每天平均睡眠时间(时间均保留整数),将样本数据绘制成统计图(如图),其中有两个数据被遮盖关于睡眠时间的统计量中,与被遮盖的数据无关的是(
)A.平均数 B.中位数 C.众数 D.方差【答案】B【分析】根据题意可得,计算平均数、众数及方差需要全部数据,从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,据此即可得出结果.【详解】解:根据题意可得,计算平均数、方差需要全部数据,故A、D不符合题意;∵5051116=18>16,∴无法确定众数分布在哪一组,故C不符合题意;从统计图可得:前三组的数据共有5+11+16=32,共有50名学生,中位数为第25与26位的平均数,∴已知的数据中中位数确定,且不受后面数据的影响,故选:B.【点睛】题目主要考查条形统计图与中位数、平均数、众数及方差的关系,理解题意,掌握中位数、平均数、众数及方差的计算方法是解题关键.44.(2022·辽宁朝阳·统考中考真题)甲、乙、丙、丁四名同学参加掷实心球测试,每人掷5次,他们的平均成绩恰好相同,方差分别是s甲2=0.55,s乙2=0.56,s丙2=0.52,s丁2=0.48,则这四名同学掷实心球的成绩最稳定的是_____.【答案】丁【分析】利用方差的意义可得答案.【详解】解:∵s甲2=0.55,s乙2=0.56,s丙2=0.52,s丁2=0.48,∴s丁2<s丙2<s甲2<s乙2,∴这四名同学掷实心球的成绩最稳定的是丁,故答案为:丁.【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.45.(2022·广西·统考中考真题)综合与实践【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动,【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:12345678910芒果树叶的长宽比3.83.73.53.43.84.03.64.03.64.0荔枝树叶的长宽比2.02.02.02.41.81.91.82.01.31.9【实践探究】分析数据如下:平均数中位数众数方差芒果树叶的长宽比3.74m4.00.0424荔枝树叶的长宽比1.912.0n0.0669【问题解决】(1)上述表格中,m=________,n=________;(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”上面两位同学的说法中,合理的是________(填序号)(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.【答案】(1)3.75,2.0(2)②(3)这片树叶更可能来自于荔枝,理由见解析【分析】(1)根据中位数和众数的定义求解即可;(2)根据方差的定义,方差越小,形状差别越小,根据树叶的长宽比的平均数、中位数和众数来看,即可判断荔枝树叶的长宽比;(3)计算该树叶的长宽比即可判断来自哪颗树.【详解】(1)芒果树叶的长宽比中数据从小到大排序处在第5、6位的两个数的平均数为3.7+3.82=3.75,因此中位数荔枝树叶的长宽比中数据出现次数最多的是2.0,因此众数n=2.0;故答案为:3.75,2.0;(2)合理的是②,理由如下:从树叶的长宽比的方差来看,芒果树叶的长宽比的方差较小,所以芒果叶形状差别更小;从树叶的长宽比的平均数、中位数和众数来看,荔枝树叶的长宽比为2,所以荔枝树叶的长约为宽的两倍;故答案为:②;(3)这片树叶更可能来自荔枝,理由如下:这片树叶长11cm,宽5.6cm,长宽比大约为2.0,根据平均数这片树叶可能来自荔枝树.【点睛】本题考查了统计图中中位数、众数、平均数、方差的意义,看懂统计图表,正确的计算是解决问题的关键.【考点10统计的综合】46.(2022·四川攀枝花·统考中考真题)为提高学生阅读兴趣,培养良好阅读习惯,2021年3月31日,教育部印发了《中小学生课外读物进校园管理办法》的通知.某学校根据通知精神,积极优化校园阅读环境,推动书香校园建设,开展了“爱读书、读好书、善读书”主题活动,随机抽取部分学生同时进行“你最喜欢的课外读物”(只能选一项)和“你每周课外阅读的时间”两项问卷调查,并绘制成如图1,图2的统计图.图1中A代表“喜欢人文类”的人数,B代表“喜欢社会类”的人数,C代表“喜欢科学类”的人数,D代表“喜欢艺术类”的人数.已知A为56人,且对应扇形圆心角的度数为126°.请你根据以上信息解答下列问题:(1)在扇形统计图中,求出“喜欢科学类”的人数;(2)补全条形统计图;(3)该校共有学生3200人,估计每周课外阅读时间不低于3小时的人数.【答案】(1)56人(2)见解析(3)1800人【分析】(1)根据A的人数和所占的百分比,求出调查的总人数,再乘以“喜欢科学类”的人数所占的百分比即可;(2)先求出每周课外阅读3:4小时的人数,再补全统计图即可;(3)用总人数乘以每周课外阅读时间不低于3小时的人数所占的百分比即可.【详解】(1)解:调查的总人数有:56÷126°则“喜欢科学类”的人数有:160×1−(2)每周课外阅读3:4小时的人数有:160−(5+28+37+50)=40(人),补全统计图如下:(3)根据题意得:3200×40+50答:估计每周课外阅读时间不低于3小时的人数有1800人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.47.(2022·浙江台州·中考真题)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康,某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭进行一次简单随机抽样调查.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调查发现,接受调查的家庭都有过期药品.现将有关数据呈现如图:①m=,n=;②补全条形统计图;③根据调查数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.【答案】(1)③;(2)①20,6;②见解析;③B类;④18万户【分析】(1)根据抽样调查时选取的样本需具有代表性即可求解;(2)①首先根据A类有80户,占8%,求出抽样调查的家庭总户数,再用D类户数除以总户数求出m,用E类户数除以总户数求出n;②用总户数分别减去A、B、D、E、F类户数,得到C类户数,即可补全条形统计图;③根据调查数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;④用180万户乘以样本中送回收点的户数所占百分比即可.【详解】(1)根据抽样调查时选取的样本需具有代表性,可知下列选取样本的方法最合理的一种是③.故答案为:③;(2)①抽样调查的家庭总户数为:80÷8%=1000(户),m%n%故答案为20,6;②C类户数为:1000(80+510+200+60+50)=100,条形统计图补充如下:③根据调查数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;④180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度棉花运输车辆油料供应与结算合同3篇
- 2025民间的借款担保合同范本
- 2024版商业肥料采购销售协议典范版B版
- 2024年限定版公共租赁住宅租赁合同一
- 二零二五年养殖合作社联合发展协议3篇
- 2024年行政复议案件审理协助委托协议3篇
- 二零二五年度体育用品销售团队招聘与激励协议3篇
- 2025年度汽车行业提成合同范本:汽车销售佣金分成协议3篇
- 2025年绿色建筑项目招标代理服务合同书2篇
- 2024年进口材料运输业务具体协议版
- 中山大学研究生中特考试大题
- 手术室护理实践指南术中低体温预防
- 钢管混凝土柱计算
- 四川省成都市2022-2023学年六年级上学期语文期末考试试卷(含答案)5
- 初一下册译林版英语常识和习语50题练习题及答含答案
- 违规建筑综合整顿行动方案(二篇)
- 酒店明住宿清单(水单)
- 《中华民族大团结》(初中) 全册教案(共12课)
- 医源性皮肤损伤课件
- 医院物业管理应急预案
- T-ISEAA 001-2020 网络安全等级保护测评高风险判定指引
评论
0/150
提交评论