版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共5页2024年青海省海东市九上数学开学考试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A..(1,4) B..(1,3) C..(2,4) D..(2,3)2、(4分)若不等式组的解集为﹣1<x<1,则(a﹣3)(b+3)的值为()A.1 B.﹣1 C.2 D.﹣23、(4分)在中,斜边,则A.10 B.20 C.50 D.1004、(4分)如图,点是菱形边上的一动点,它从点出发沿在路径匀速运动到点,设的面积为,点的运动时间为,则关于的函数图象大致为A. B.C. D.5、(4分)如图,在正方形中,以点为圆心,以长为半径画圆弧,交对角线于点,再分别以点、为圆心,以大于长为半径画圆弧,两弧交于点,连结并延长,交的延长线于点,则的大小为()A. B. C. D.6、(4分)计算:()A.5 B.7 C.-5 D.-77、(4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)
5
6
7
8
人数
10
15
20
5
则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时 B.6.4小时 C.6.5小时 D.7小时8、(4分)已知函数y=(k-3)x,y随x的增大而减小,则常数k的取值范围是()A.k>3 B.k<3 C.k<-3 D.k<0二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)直线与两坐标轴围成的三角形的面积为4,则的值为______.10、(4分)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD.动点P从点B出发沿折线B-A-D-C方向以1单位/秒的速度匀速运动,在整个运动过程中,△BCP的面积S与运动时间t(秒)的函数图象如图2所示,写出①AB=__________;②CD=_______________(提示:过A作CD的垂线);③BC=_______________.11、(4分)如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是____________cm.12、(4分)如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O顺时针旋转15°,此时点A对应点A′的坐标是_____.13、(4分)数据、、、、的方差是____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线.过点有作AG∥DB交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.15、(8分)如图,在网格平面直角坐标系中,△ABC的顶点均在格点上.(1)请把△ABC向上平移2个单位长度,再向左平移1个单位长度得到△A'B′C',画出△A'B′C’并写出点A′,B′的坐标.(2)求△ABC的面积.16、(8分)某校计划厂家购买A、B两种型号的电脑,已知每台A种型号电脑比每台B种型号电脑多01.万元,且用10万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同;(1)求A、B两种型号电脑单价各为多少万元?(2)学校预计用不多于9.2万元的资金购进20台电脑,其中A种型号电脑至少要购进10台,请问有哪几种购买方案?17、(10分)如图,点E,F在菱形ABCD的对边上,AE⊥BC.∠1=∠1.(1)判断四边形AECF的形状,并证明你的结论.(1)若AE=4,AF=1,试求菱形ABCD的面积.18、(10分)如图,在△ABC中,∠ACB=90°,AC=BC,点E是BC上一点(不与点B,C重合),点M是AE上一点(不与点A,E重合),连接并延长CM交AB于点G,将线段CM绕点C按顺时针方向旋转90°,得到线段CN,射线BN分别交AE的延长线和GC的延长线于D,F.(1)求证:△ACM≌△BCN;(2)求∠BDA的度数;(3)若∠EAC=15°,∠ACM=60°,AC=+1,求线段AM的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)数据﹣2,﹣1,0,3,5的方差是.20、(4分)如图,四边形ABCD中,连接AC,AB∥DC,要使AD=BC,需要添加的一个条件是_____.21、(4分)若直线和直线的交点在第三象限,则m的取值范围是________.22、(4分)若一次函数y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,则m的取值范围是__________23、(4分)如图,矩形ABCD中,对角线AC、BD交于点O,E为OB中点,且AE⊥BD,BD=4,则CD=____________________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,正方形的边长为2,边在轴上,的中点与原点重合,过定点与动点的直线记作.(1)若的解析式为,判断此时点是否在直线上,并说明理由;(2)当直线与边有公共点时,求的取值范围.25、(10分)计算:.26、(12分)某游泳池有900立方米水,每次换水前后水的体积保持不变.设放水的平均速度为v立方米/小时,将池内的水放完需t小时,(1)求v关于t的函数表达式,并写出自变量t的取值范围;(2)若要求在2.5小时至3小时内(包括2.5小时与3小时)把游泳池内的水放完,求放水速度的范围.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据点A、C的坐标确定出平移规律,然后根据规律求解点D的坐标即可.【详解】∵A(﹣1,0)的对应点C的坐标为(2,1),∴平移规律为横坐标加3,纵坐标加1,∵点B(﹣2,3)的对应点为D,∴D的坐标为(1,4).故选A.本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.2、D【解析】试题分析:解不等式2x﹣a<1,得:x<,解不等式x﹣2b>3,得:x>2b+3,∵不等式组的解集为﹣1<x<1,∴,解得:a=1,b=﹣2,当a=1,b=﹣2时,(a﹣3)(b+3)=﹣2×1=﹣2,故选D.考点:解一元一次不等式组3、D【解析】
根据勾股定理计算即可.【详解】在中,,,故选:D.本题考查勾股定理,解题的关键是记住在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4、B【解析】
设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【详解】设菱形的高为h,有三种情况:①当P在AB边上时,如图1,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确,故选B.本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出△PAD的面积的表达式是解题的关键.5、B【解析】
根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC=22.5°,根据三角形的内角和即可得到结论.【详解】解:在正方形中,∠DAC=∠ACD=45∘,由作图知,∠CAP=∠DAP=22.5°,∴∠P=180°−∠ACP−∠CAP=22.5°,故选B.本题考察了正方形的性质,掌握正方形的对角线平分对角是解题的关键.6、A【解析】
先利用二次根式的性质进行化简,然后再进行减法运算即可.【详解】=6-1=5,故选A.本题考查了二次根式的化简,熟练掌握是解题的关键.7、B【解析】平均数是指在一组数据中所有数据之和再除以数据的个数.因此,这50名学生这一周在校的平均体育锻炼时间是=6.4(小时).故选B.8、B【解析】
根据一次项系数小于0时,y随x的增大而减小,即可解题.【详解】解:由题可知k-3<0,解得:k<3,故选B.本题考查了一次函数的增减性,属于简单题,熟悉概念是解题关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
直线y=-2x+b与x轴的交点为(
,0),与y轴的交点是(0,b),由题意得,,求解即可.【详解】∵直线y=-2x+b与x轴的交点为(
,0),与y轴的交点是(0,b),直线y=-2x+b与两坐标轴围成的三角形的面积是1,∴,解得:b=±1.故答案为:.本题考查了一次函数图象上点的坐标特征.本题需注意在计算平面直角坐标系中的三角形面积时,用不确定的未知字母来表示线段长时,应该使用该字母的绝对值表示.10、162【解析】
根据图1和图2得当t=1时,点P到达A处,即AB=1;当S=12时,点P到达点D处,即可求解.【详解】①当t=1时,点P到达A处,即AB=1.故答案是:1;②过点A作AE⊥CD交CD于点E,则四边形ABCE为矩形,∵AC=AD,∴DE=CE=,∴CD=6,故答案是:6;③当S=12时,点P到达点D处,则S=CD•BC=(2AB)•BC=1×BC=12,则BC=2,故答案是:2.考查了动点问题的函数图象,注意分类讨论的思想、函数的知识和等腰三角形等的综合利用,具有很强的综合性.11、7.2【解析】试题分析:根据勾股定理的逆定理求出∠A=90°,根据矩形的判定得出四边形ADME是矩形,根据矩形的性质得出DE=AM,求出AM的最小值即可.解:∵在△ABC中,AB=6cm,AC=1cm,BC=10cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB×AC=BC×AM,∴6×1=10AM,AM=4.1(cm),即DE的最小值是4.1cm.故答案为4.1.考点:矩形的判定与性质;垂线段最短;勾股定理的逆定理.12、.【解析】
作AE⊥OB于E,A′H⊥OB于H.求出A′H,OH即可解决问题.【详解】如图,作AE⊥OB于E,A′H⊥OB于H.∵A(1,),∴OE=1,AE=,∴OA==2,∵△OAB是等边三角形,∴∠AOB=60°,∵∠AOA′=15°,∴∠A′OH=60°﹣15°=45°,∵OA′=OA=2,H⊥OH,∴A′H=OH=,∴(,),故答案为:(,).此题考查等边三角形的性质,旋转的性质,勾股定理,求直角坐标系中点的坐标需从点向坐标轴作垂线,求出垂线段的长度由此得到点的坐标.13、【解析】分析:先求平均数,根据方差公式求解即可.详解:数据1,2,3,3,6的平均数∴数据1,2,3,3,6的方差:故答案为:点睛:考查方差的计算,记忆方差公式是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)证明见解析;(2)证明见解析.【解析】
(1)根据已知条件证明AE=CF,从而根据SAS可证明两三角形全等;(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【详解】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C,∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS);(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴AE=BE=DE,∵DF∥BE,DF=BE,∴四边形DEBF是平行四边形,∴四边形DEBF是菱形.本题主要考查了平行四边形的性质、菱形的判定,直角三角形的性质:在直角三角形中斜边中线等于斜边一半,难度适中.15、(1);;(2)7【解析】
(1)将A、B、C三点分别按要求平移,即可得出新坐标;;,连接三点,即可得出新三角形;(2)将△ABC和周围的三个三角形整体长方形,长方形面积很容易得出,分别减去周围三个三角形的面积,即可得出,.【详解】解:(1)如图;(2)(1)此题主要考查平面坐标系中的平移问题,对应坐标按要求平移即可得出新坐标;(2)将△ABC和周围的三个三角形整体长方形,长方形面积很容易得出,分别减去周围三个三角形的面积,即可得出.16、(1)A、B两种型号电脑单价分别为0.5万元和0.4万元;(2)有三种方案:购买A种型号电脑10台,B种型号电脑10台;购买A种型号电脑11台,B种型号电脑9台;购买A种型号电脑12台,B种型号电脑8台.【解析】
(1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x+0.1)万元,根据题意可列出分式方程进行求解;(2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,根据题意可列出不等式组即可求解.【详解】(1)A种型号的电脑每台价格为x万元,则B种型号的电脑每台价格为(x-0.1)万元,根据题意得,解得x=0.5,经检验,x=0.5是原方程的解,x-0.1=0.4,故A、B两种型号电脑单价分别为0.5万元和0.4万元.(2)设购买A种型号电脑y台,则购买B种型号电脑(20-y)台,根据题意得,解得y≤12,又A种型号电脑至少要购进10台,∴10≤y≤12,故有三种方案:购买A种型号电脑10台,B种型号电脑10台;购买A种型号电脑11台,B种型号电脑9台;购买A种型号电脑12台,B种型号电脑8台;此题主要考查分式方程、不等式的应用,解题的关键是根据题意找到等量关系、不等式关系进行列式求解.17、四边形AECF是矩形,理由见解析;(1)菱形ABCD的面积=10.【解析】
(1)由菱形的性质可得AD=BC,AD∥BC,∠BAD=∠BCD,由∠1=∠1可得∠EAF=∠FCB=90°=∠AEC,可得四边形AECF是矩形;
(1)由勾股定理可求AB的值,由菱形的面积公式可求解.【详解】解:(1)四边形AECF是矩形
理由如下:
∵四边形ABCD是菱形
∴AD=BC=AB,AD∥BC,∠BAD=∠BCD,
∵AE⊥BC
∴AE⊥AD
∴∠FAE=∠AEC=90°
∵∠1=∠1
∴∠BAD-∠1=∠BCD-∠1
∴∠EAF=∠FCB=90°=∠AEC
∴四边形AECF是矩形
(1)∵四边形AECF是矩形
∴AF=EC=1
在Rt△ABE中,AB1=AE1+BE1,
∴AB1=16+(AB-1)1,
∴AB=5
∴菱形ABCD的面积=5×4=10本题考查了菱形的性质,矩形的判定和性质,勾股定理,熟练运用菱形的性质是本题的关键.18、(1)见解析;(2)∠BDA=90°;(3)AM=.【解析】
(1)根据题意可知∠ACM=∠BCN,再利用SAS即可证明(2)根据(1)可求出∠ACE=∠BDE=90°,即可解答(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.可知AQ=QM=2a,QH=a,再求出a的值,利用勾股定理即可解答【详解】(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN,在△MAC和△NBC中,∴△MAC≌△NBC(SAS).(2)∵△MAC≌△NBC,∴∠NBC=∠MAC∵∠AEC=∠BED,∴∠ACE=∠BDE=90°,∴∠BDA=90°.(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.∵AQ=QM,∴∠QAE=∠AMQ=15°,∴∠EQH=30°,∴AQ=QM=2a,QH=a,∵∠ECH=60°,∴CH=a,∵AC=+1,∴2a+a+a=+1,∴a=,∵AM==(+)a=.此题考查了三角形全等的性质和判定,勾股定理,解题关键在于先利用SAS判定三角形全等一、填空题(本大题共5个小题,每小题4分,共20分)19、.【解析】
试题分析:先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为.20、AB=CD(答案不唯一)【解析】
由AB∥DC,AB=DC证出四边形ABCD是平行四边形,即可得出AD=BC.【详解】解:添加条件为:AB=CD(答案不唯一);理由如下:∵AB∥DC,AB=CD,∴四边形ABCD是平行四边形,∴AD=BC.故答案为AB=CD(答案不唯一).本题考查了平行四边形的判定与性质;熟记平行四边形的判定方法,证明四边形是平行四边形是解决问题的关键.21、m<−1.【解析】
首先把y=2x-1和y=m-x,组成方程组,求解,x和y的值都用m来表示,根据题意交点坐标在第三象限表明x、y都小于0,即可求得m的取值范围.【详解】∵,∴解方程组得:,∵直线y=2x−1和直线y=m−x的交点在第三象限,∴x<0,y<0,∴m<−1,m<0.5,∴m<−1.故答案为:m<−1.此题考查两条直线相交或平行问题,解题关键在于用m来表示x,y的值.22、m<【解析】
∵y=(2m﹣1)x+3﹣2m的图象经过一、二、四象限,∴(2m﹣1)<0,3﹣2m>0∴解不等式得:m<,m<,∴m的取值范围是m<.故答案为m<.23、2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桥梁建设劳务协作合同范例
- 电子购销合同的适用范围与签订条件
- 招标文件撰写快速入门
- 银行短期贷款借款合同
- 2024大同企业集体合同条例集体合同条例
- 2024经济适用房预售合同范文
- 智能制造制造业服务化转型的战略与实践考核试卷
- 深圳返聘用工合同范例
- 日用化学产品二锅头类考核试卷
- 开店小本创业合同范例
- 2024中国通用技术集团总部招聘7人高频考题难、易错点模拟试题(共500题)附带答案详解
- 体检中心护理课件培训
- 大学生职业生涯发展展示 (修改版)
- 茶百道整合营销方案
- 2024-2024英语全国卷一完形填空整合
- 脑梗死伴高血压3级病例分析专题报告
- 孕妇心衰健康宣教
- 手机测试流程课件
- 灭火器的规格与使用培训
- 《麦肯锡沟通》课件
- 建筑专题摄影培训课件
评论
0/150
提交评论