2025届北京市八十中高一数学第一学期期末经典模拟试题含解析_第1页
2025届北京市八十中高一数学第一学期期末经典模拟试题含解析_第2页
2025届北京市八十中高一数学第一学期期末经典模拟试题含解析_第3页
2025届北京市八十中高一数学第一学期期末经典模拟试题含解析_第4页
2025届北京市八十中高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届北京市八十中高一数学第一学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,直线的斜率是()A. B.C. D.2.已知函数,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则的取值范围为()A.(﹣1,+∞) B.(﹣1,1]C.(﹣∞,1) D.[﹣1,1)3.已知f(x-1)=2x-5,且f(a)=6,则a等于()A. B.C. D.4.以下命题(其中,表示直线,表示平面):①若,,则;②若,,则;③若,,则;④若,,则其中正确命题的个数是A.0个 B.1个C.2个 D.3个5.一名篮球运动员在最近6场比赛中所得分数的茎叶图如图所示,由于疏忽,茎叶图中的两个数据上出现了污点,导致这两个数字无法辨认,但统计员记得除掉污点2处的数字不影响整体中位数,且这六个数据的平均数为17,则污点1,2处的数字分别为A.5,7 B.5,6C.4,5 D.5,56.函数f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)7.已知函数关于x的方程有4个根,,,,则的取值范围是()A. B.C. D.8.已知函数则函数的零点个数为()A.0 B.1C.2 D.39.函数的零点所在区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)10.已知函数是上的奇函数,且在单调递减,则三个数:,,之间的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,正实数,满足,且,若在区间上的最大值为2,则________.12.设a>0且a≠1,函数fx13.函数fx的定义域为D,给出下列两个条件:①f1=0;②任取x1,x2∈D且x1≠14.已知,那么的值为___________.15.函数的最小值是________.16.已知,写出一个满足条件的的值:______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.(1)求证:DE平面ABC;(2)求证:B1C⊥平面BDE.18.,,且,,且为偶函数(1)求;(2)求满足,的的集合19.已知圆的方程为,是坐标原点.直线与圆交于两点(1)求的取值范围;(2)过点作圆的切线,求切线所在直线的方程.20.已知函数,直线是函数f(x)的图象的一条对称轴.(1)求函数f(x)的单调递增区间;(2)已知函数y=g(x)的图象是由y=f(x)的图象上各点的横坐标伸长到原来的2倍,然后再向左平移个单位长度得到的,若求的值.21.已知函数(1)判断的奇偶性,并加以证明;(2)求函数的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.2、B【解析】由方程f(x)=a,得到x1,x2关于x=﹣1对称,且x3x4=1;化简,利用数形结合进行求解即可【详解】作函数f(x)的图象如图所示,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,即﹣log2x3=log2x4,则log2x3+log2x4=0,即log2x3x4=0,则x3x4=1;当|log2x|=1得x=2或,则1<x4≤2;≤x3<1;故;则函数y=﹣2x3+,在≤x3<1上为减函数,则故当x3=取得y取最大值y=1,当x3=1时,函数值y=﹣1.即函数取值范围(﹣1,1]故选B【点睛】本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键,属于中档题3、B【解析】先用换元法求出,然后由函数值求自变量即可.【详解】令,则,可得,即,由题知,解得.故选:B4、A【解析】利用线面平行和线线平行的性质和判定定理对四个命题分别分析进行选择【详解】①若a∥b,b⊂α,则a∥α或a⊂α,故错;②若a∥α,b∥α,则a,b平行、相交或异面,故②错;③若a∥b,b∥α,则a∥α或a⊂α,故③错;④若a∥α,b⊂α,则a、b平行或异面,故④错正确命题个数为0个,故选A.【点睛】本题考查空间两直线的位置关系,直线与平面的位置关系,主要考查线面平行的判定和性质.5、A【解析】由于除掉处的数字后剩余个数据的中位数为,故污点处的数字为,,则污点处的数字为,故选A.6、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理7、B【解析】依题意画出函数图象,结合图象可知且,,即可得到,则,再令,根据二次函数的性质求出的取值范围,最后根据对勾函数的性质计算可得;【详解】解:因,所以函数图象如下所示:由图象可知,其中,其中,,,则,得..令,,又在上单调减,,即.故选:B.8、C【解析】的零点个数等于的图象与的图象的交点个数,作出函数f(x)和的图像,根据图像即可得到答案.【详解】的零点个数等于的图象与的图象的交点个数,由图可知,的图象与的图象的交点个数为2.故选:C.9、B【解析】计算出,并判断符号,由零点存在性定理可得答案.【详解】因为,,所以根据零点存在性定理可知函数的零点所在区间是,故选:B【点睛】本题考查了利用零点存在性定理判断函数的零点所在区间,解题方法是计算区间端点的函数值并判断符号,如果异号,说明区间内由零点,属于基础题.10、D【解析】根据题意,得函数在上单调递减,又,,然后结合单调性判断【详解】因为函数是上奇函数,且在单调递减,所以函数在上单调递减,∵,,∴,即故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先画出函数图像并判断,再根据范围和函数单调性判断时取最大值,最后计算得到答案.【详解】如图所示:根据函数的图象得,所以.结合函数图象,易知当时在上取得最大值,所以又,所以,再结合,可得,所以.故答案为:【点睛】本题考查对数型函数的图像和性质、函数的单调性的应用和最值的求法,是中档题.12、1,0【解析】令指数为0即可求得函数图象所过的定点.【详解】由题意,令x-1=0⇒x=1,y=1-1=0,则函数的图象过定点(1,0).故答案为:(1,0).13、2x-1【解析】由题意可知函数在定义域内为增函数,且f1【详解】因为函数fx的定义域为D,且任取x1,x2所以fx因为f1所以f(x)=2故答案为:2x-114、##0.8【解析】由诱导公式直接可得.详解】.故答案为:15、2【解析】直接利用基本不等式即可得出答案.【详解】解:因为,所以,当且仅当,即时,取等号,所以函数的最小值为2.故答案为:2.16、(答案不唯一)【解析】利用,可得,,计算即可得出结果.【详解】因为,所以,则,或,故答案为:(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明过程见解析;(2)证明过程见解析.【解析】(1)根据面面平行的判定定理,结合线面平行的判定定理、面面平行的性质进行证明即可;(2)根据正三棱柱的几何性质,结合面面垂直的性质定理、线面垂直的判定定理、面面平行的性质定理进行证明即可.【小问1详解】设G是CC1的中点,连接,因为E为B1C的中点,所以,而,所以,因为平面ABC,平面ABC,所以平面ABC,同理可证平面ABC,因为平面,且,所以面平面ABC,而平面,所以DE平面ABC;【小问2详解】设是的中点,连接,因为E为B1C的中点,所以,而,所以,由(1)可知:面平面ABC,平面平面,平面平面,因此,在正三棱柱ABC-A1B1C1中,平面平面ABC,而平面平面ABC,因为ABC是正三角形,是的中点,所以,因此平面,而平面,因此,而,所以,因为正三棱柱ABC-A1B1C1中棱长都相等,所以,而E分别为B1C的中点,所以,而平面BDE,,所以B1C⊥平面BDE.18、(1);(2)【解析】(1)首先利用向量数量积的坐标运算并且结合二倍角公式与两角和的正弦公式化简函数的解析式,可得:.由已知为偶函数知其图象关于y轴对称,可得:当x=0成立,从而可得,再根据θ的范围即可得到答案(2)由(1)可得:,再结合余弦函数的图象及性质可得:,进而结合x的取值范围得到结果试题解析:(1)由题意可得:所以函数解析式为:;因为为偶函数,所以有:即:又因为,所以(2)由(1)可得:,因为,所以由余弦函数的图象及性质得:,又因为,所以x的集合为考点:1.两角和与差的正余弦公式、二倍角公式;2.向量数量积的坐标运算;3.三角函数的性质19、(1);(2)或【解析】(1)直线与圆交于两点,即直线与圆相交,转化成圆心到直线距离小于半径,利用公式解不等式;(2)过某点求圆的切线,分斜率存在和斜率不存在两种情况数形结合分别讨论.【详解】(1)圆心到直线的距离,解得或即k的取值范围为.(2)当过点P的直线斜率不存在时,即x=2与圆相切,符合题意.当过点P的直线斜率存在时,设其方程为即,由圆心(0,4)到直线的距离等于2,可得解得,故直线方程为综上所述,圆的切线方程为或【点睛】此题考查直线和圆的位置关系,结合圆的几何性质处理相交相切,过某点的直线在设其方程的时候一定注意讨论斜率是否存在,这是一个易错点,对逻辑思维能力要求较高,当然也可以考虑直线与二次曲线的常规解法.20、(1);(2)【解析】(1)首先化简函数,再根据是函数的一条对称轴,代入求,再求函数的单调递增区间;(2)先根据函数图象变换得到,并代入后,得,再利用角的变换求的值.【详解】(1),当时,,得,,,即,令,解得:,,函数的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论