版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省余姚八中2025届数学高二上期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,且直线始终平分圆的周长,则的最小值是()A.2 B.C.6 D.162.已知双曲线,则“”是“双曲线的焦距大于4”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.(5分)已知集合A={x|−2<x<4},集合B={x|(x−6)(x+1)<0},则A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|−2<x<−1} D.{x|−1<x<4}4.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B.C. D.5.如图,奥运五环由5个奥林匹克环套接组成,环从左到右互相套接,上面是蓝、黑、红环,下面是黄,绿环,整个造形为一个底部小的规则梯形.为迎接北京冬奥会召开,某机构定制一批奥运五环旗,已知该五环旗的5个奥林匹克环的内圈半径为1,外圈半径为1.2,相邻圆环圆心水平距离为2.6,两排圆环圆心垂直距离为1.1,则相邻两个相交的圆的圆心之间的距离为()A. B.2.8C. D.2.96.正方体的表面积为,则正方体外接球的表面积为(
)A. B.C. D.7.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.08.若圆上恰有2个点到直线的距离为1,则实数的取值范围为()A B.C. D.9.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.10.设是周期为2的奇函数,当时,,则()A. B.C. D.11.椭圆的()A.焦点在x轴上,长轴长为2 B.焦点在y轴上,长轴长为2C.焦点在x轴上,长轴长为 D.焦点在y轴上,长轴长为12.若直线与圆相切,则()A. B.或2C. D.或二、填空题:本题共4小题,每小题5分,共20分。13.记为等差数列的前n项和.若,则__________14.已知正数、满足,则的最大值为__________15.已知双曲线C:的一个焦点坐标为,则其渐近线方程为__________16.若双曲线的左、右焦点为,,直线与双曲线交于两点,且,为坐标原点,又,则该双曲线的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆心C的坐标为,且是圆C上一点(1)求圆C的标准方程;(2)过点的直线l被圆C所截得的弦长为,求直线l的方程18.(12分)在2021年“双11”网上购物节期间,某电商平台销售了一款新手机,现在该电商为调查这款手机使用后的“满意度”,从购买了该款手机的顾客中抽取1000人,每人在规定区间内给出一个“满意度”分数,评分在60分以下的视为“不满意”,在60分到80分之间(含60分但不含80分)的视为“基本满意”,在80分及以上的视为“非常满意”.现将他们的评分按,,,,分成5组,得到如图所示的频率分布直方图.(1)求这1000人中对该款手机“非常满意”的人数和“满意度”评分的中位数的估计值.(2)若按“满意度”采用分层抽样的方法从这1000名被调查者中抽取20人,再从这20人中随机抽取3人,记这3人中对该款手机“非常满意”的人数为X.①写出X的分布列,并求数学期望;②若被抽取的这3人中对该款手机“非常满意”的被调查者将获得100元话费补贴,其他被调查者将获得50元话费补贴,请求出这3人将获得的话费补贴总额的期望.19.(12分)在中,角的对边分别为,已知,,且.(1)求角的大小;(2)若,面积为,试判断的形状,并说明理由.20.(12分)设点P是曲线上的任意一点,k是该曲线在点P处的切线的斜率(1)求k的取值范围;(2)求当k取最大值时,该曲线在点P处的切线方程21.(12分)如图,点О是正四棱锥的底面中心,四边形PQDO矩形,(1)点B到平面APQ的距离:(2)设E为棱PC上的点,且,若直线DE与平面APQ所成角的正弦值为,试求实数的值22.(10分)如图,在四棱锥中,四边形是直角梯形,,,,为等边三角形.(1)证明:;(2)求点到平面的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知直线过圆心得,再用均值不等式即可.【详解】由已知直线过圆心得:,,当且仅当时取等.故选:B.2、A【解析】先找出“双曲线的焦距大于4”的充要条件,再进行判断即可【详解】若的焦距,则;若,则故选:A3、D【解析】由(x−6)(x+1)<0,得−1<x<6,从而有B={x|−1<x<6},所以A∩B={x|−1<x<4},故选D4、C【解析】抛物线焦点为,准线方程为,由得或所以,故答案为C考点:1、抛物线的定义;2、直线与抛物线的位置关系5、C【解析】根据题意作出辅助线直接求解即可.【详解】如图所示,由题意可知,在中,取的中点,连接,所以,,又因为,所以,所以即相邻两个相交的圆的圆心之间的距离为.故选:C6、B【解析】由正方体表面积求得棱长,再求得正方体的对角线长,即为外接球的直径,从而可得球表面积【详解】设正方体棱长为,由得,正方体对角线长,所以其外接球半径为,球表面积为故选:B7、A【解析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A8、A【解析】求得圆心到直线的距离,根据题意列出的不等关系式,即可求得的范围.【详解】因为圆心到直线的距离,故要满足题意,只需,解得.故选:A.9、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.10、A【解析】由周期函数得,再由奇函数的性质通过得结论【详解】∵函数是周期为2的周期函数,∴,而,又函数为奇函数,∴.故选A【点睛】本题考查函数的周期性与奇偶性,属于基础题.此类题型,求函数值时,一般先用周期性化自变量到已知区间关于原点对称的区间,然后再由奇函数性质求得函数值11、B【解析】把椭圆方程化为标准方程可判断焦点位置和求出长轴长.【详解】椭圆化为标准方程为,所以,且,所以椭圆焦点在轴上,,长轴长为.故选:B.12、D【解析】根据圆心到直线的距离等于半径列方程即可求解.【详解】由圆可得圆心,半径,因为直线与圆相切,所以圆心到直线的距离,整理可得:,所以或,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】因为是等差数列,根据已知条件,求出公差,根据等差数列前项和,即可求得答案.【详解】是等差数列,且,设等差数列的公差根据等差数列通项公式:可得即:整理可得:解得:根据等差数列前项和公式:可得:.故答案:.【点睛】本题主要考查了求等差数列的前项和,解题关键是掌握等差数列的前项和公式,考查了分析能力和计算能力,属于基础题.14、【解析】直接利用均值不等式得到答案.【详解】,当即时等号成立.故答案为【点睛】本题考查了均值不等式,意在考查学生的计算能力.15、【解析】根据双曲线的定义由焦点坐标求出,即可得到双曲线方程,从而得到其渐近线方程;【详解】解:因为双曲线C:的一个焦点坐标为,即,,又,所以,所以双曲线方程为,所以双曲线的渐近线为;故答案为:16、【解析】根据直线和双曲线的对称性,结合圆的性质、双曲线的定义、三角形面积公式、双曲线离心率公式进行求解即可.【详解】由直线与双曲线的对称性可知,点与点关于原点对称,在三角形中,,所以,是以为直径的圆与双曲线的交点,不妨设在第一象限,,因为圆是以为直径,所以圆的半径为,因为点在圆上,也在双曲线上,所以有,联立化简可得,整理得,,所以,由所以,又因为,联立可得,,因为为圆的直径,所以,即,,所以离心率.故答案为:【点睛】关键点睛:利用直线和双曲线的对称性,结合圆的性质进行求解是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)计算圆的半径,写出圆的标准方程即可;(2)先验证斜率不存在时,是否满足题意,再分析斜率存在时,利用点到直线距离求出斜率即可得解.【小问1详解】由题意得:所以,圆C的标准方程为【小问2详解】当直线l斜率不存在时,直线l的方程为,此时所截得的线段的长为,符合题意当直线l的斜率存在时,设l的方程为,即,圆心到直线l的距离,由题意,得,解得,∴直线l的方程为,即综上,直线l的方程为或18、(1)65分(2)①分布列答案见解析,数学期望:;②172.5元【解析】(1)由图可知中位数在第二组,则设中位数为,从而得,解方程可得答案,(2)①由题意可求得“不满意”与“基本满意”的用户应抽取17人,“非常满意”的用户应抽取3人,则X的可能取值分别为0,1,2,3,然后求出对应的概率,从而可求得其分布列和期望,②设这3人获得的话费补贴总额为Y,则,然后由①结合期望的性质可求得答案【小问1详解】这1000人中对该款手机“非常满意”的人数为.由频率分布直方图可得,得分的中位数为,则,解得,所以中位数为65分.【小问2详解】①若按“满意度”采用分层抽样的方法从这1000名被调查者中抽取20人,则“不满意”与“基本满意”的用户应抽取人,“非常满意”的用户应抽取人,X的可能取值分别为0,1,2,3,,,,,则X的分布列为X0123P故.②设这3人获得的话费补贴总额为Y,则(元),所以元,故这3人将获得的话费补贴总额的期望为172.5元.19、(1);(2)为等边三角形【解析】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得sinB(2cosA﹣1)=0,从而得角A;(2)由S△ABC=bcsinA=,可得bc=3,①;再由余弦定理a2=b2+c2﹣2bccosA可得b2+c2=6,②;联立①②可求得b=c=,从而可判断△ABC的形状【详解】(1)由(2b﹣c)cosA﹣acosC=0及正弦定理,得(2sinB﹣sinC)cosA﹣sinAcosC=0,∴2sinBcosA﹣sin(A+C)=0,sinB(2cosA﹣1)=0∵0<B<π,∴sinB≠0,∴cosA=.∵0<A<π,∴A=(2)△ABC为等边三角形,∵S△ABC=bcsinA=,即bcsin=,∴bc=3,①∵a2=b2+c2﹣2bccosA,A=,a=,∴b2+c2=6,②由①②得b=c=,∴△ABC为等边三角形【点睛】本题考查三角形形状的判断,着重考查正弦定理与余弦定理的应用,考查方程思想与运算求解能力,属于中档题20、(1)(2)【解析】(1)先求导数再求最值即可求解答案;(2)由(1)确定切点,从而也确定的斜率就可以求切线.【小问1详解】设,因为,所以,所以k的取值范围为【小问2详解】由(1)知,此时,即,所以此时曲线在点P处的切线方程为21、(1)(2)或【解析】(1)以三棱锥等体积法求点到面距离,思路简单快捷.(2)由直线DE与平面APQ所成角的正弦值为,可以列关于的方程,解之即可.【小问1详解】点О是正四棱锥底面中心,点О是BD的中点,四边形PQDO矩形,,两点到平面APQ的距离相等.正四棱锥中,平面,平面,,,设点B到平面APQ的距离为d,则,即解之得,即点B到平面APQ的距离为【小问2详解】取PC中点N,连接BN、ON、DN,则.平面平面正四棱锥中,,直线平面平面,平面平面,平面平面平面中,点E到直线ON的距离即为点E到平面的距离.中,,点P到直线ON的距离为△中,,设点E到平面的距离为d,则有,则则有,整理得,解之得或22、(1)略;(2)【解析】(1)推导出BD⊥BC,PB⊥BC,从而BC⊥平面PBD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新房屋买卖合同年
- 农业灌溉机井管理承包合同
- 建筑脚手架承包合同协议书
- 二手房买卖合同范文
- 工业互联网平台建设合同2024宁波
- 2025合同模板车辆租赁协议范本
- 2025空门面转让合同
- 2025借款保证担保合同
- 2025年中图版七年级物理上册阶段测试试卷含答案
- 2025年粤教版高三历史下册月考试卷
- 《航运市场营销》课件-海运巨头马士基
- 博物馆布展项目施工组织设计(完整模板)
- 绘本创作方案
- 《童年的水墨画》的说课课件
- 地铁保洁服务投标方案(技术标)
- 2023年河南省新乡市凤泉区事业单位招聘53人高频考点题库(共500题含答案解析)模拟练习试卷
- 2023年小升初简历下载
- 广府文化的奇葩
- 公路工程标准施工招标文件(2018年版)解析
- 七年级地理下册期末试卷(人教版)
- 第八节 元代散曲
评论
0/150
提交评论