北师大版八年级下册数学期中考试试题含答案_第1页
北师大版八年级下册数学期中考试试题含答案_第2页
北师大版八年级下册数学期中考试试题含答案_第3页
北师大版八年级下册数学期中考试试题含答案_第4页
北师大版八年级下册数学期中考试试题含答案_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

答案第=page11页,共=sectionpages22页北师大版八年级下册数学期中考试试卷一、单选题1.不等式的解集是(

)A.B.C.D.2.如图,在△ABC中,AB=BD=AC,AD=CD,则∠ADB的度数是()A.36°B.45°C.60°D.72°3.三角形中到三个顶点的距离都相等的点是三条(

)的交点A.角平分线B.中垂线C.中线D.高4.下列不等式变形正确的是(

)A.由,得B.由,得C.由,得D.由,得5.如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是

()A.垂直B.相等C.平分D.平分且垂直6.如图,在△ABC中,∠C=90°,按以下步骤作图:①以点A为圆心、适当长为半径作圆弧,分别交边AC、AB于点M、N;②分别以点M和点N为圆心、大于MN的长为半径作圆弧,在∠BAC内,两弧交于点P;③作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是(

)A.15B.30C.45D.607.如图,函数和的图象相交于A(m,3),则不等式的解集为(

)A.B.C.D.8.若为三边,且满足,则的形状是(

)A.直角三角形B.等腰三角形C.等腰直角三角形D.以上均有可能9.如图,直线与相交于点P,点P的横坐标为-1,则关于x的不等式的解集在数轴上表示正确的是(

)A.B.C.D.10.如图,在中,,,平分交于点,于点,下列结论:①;②;③;④点在线段的垂直平分线上,其中正确的个数有(

)A.4个B.3个C.2个D.1个二、填空题11.因式分解:ab-b2=________.12.运行程序如图所示,从“输入实数x”到“结果是否<18"为一次程序操作.若输入x后,程序操作仅进行了一次就停止.则x的取值范围是____.13.关于的不等式组有三个整数解,则的取值范围是__________.14.如图所示的正方形网格中,网格线的交点称为格点,已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则符合条件的点C有_____个.15.如图,在平面直角坐标系中,已知点分别在轴、轴的正半轴上,,,将绕点A按顺时针方向旋转得到,使所在直线经过点,则直线的解析式为__________.三、解答题16.解不等式与不等式组:(1)解不等式,并把它的解集在数轴上表示出来;(2)解不等式组并求出它的所有整数解17.在中,,的垂直平分线交于点,交的延长线于点.(1)若,则为度;(2)如果(),其余条件不变,求的度数;(3)补全规律:等腰三角形一腰的垂直平分线与相交所成的锐角等于.18.已知:如图,∠ABC,射线BC上一点D,求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.(不写作法,保留作图痕迹)19.某校决定组织学生开展校外拓展活动,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲乙两种大客车,它们的载客量和租金如下表所示.学校计划此次拓展活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.客车甲种乙种载客量/(人/辆)3042租

金/(元/辆)300400(1)参加此次拓展活动的老师有人,参加此次拓展活动的学生有人;(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为辆.(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.20.在中,,点为内一点.(1)如图1,连接,将沿射线方向平移,得到,点的对应点分别为点,连接.如果,,则.(2)如图2,连接,当时,求的最小值.21.如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.(1)求点E的坐标;(2)点M是OB上任意一点,点N是OA上任意一点,是否存在点M、N,使得AM+MN最小?若存在,求出其最小值,若不存在,请说明理由.22.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.23.如图,在直角坐标系中,边长为的等边的项点都在轴上,顶点在第二象限内,经过平移或轴对称或旋转都可以得到.(1)沿轴向右平移得到,则平移的距离是个长度单位;与关于直线对称,则对称轴是,绕原点顺时针方向旋转得到,则旋转角度至少是度;(2)连接,交于点,求的度数.24.(1)如图1,求证:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)如图2,若的平分线与外角的平分线相交于点连接,若,则是度.参考答案1.A2.D3.B4.D5.D6.B7.C8.D9.C10.A11.b(a-b)【解析】直接提公因式即可分解.【详解】解:ab-b2=b(a-b),故答案为:b(a-b)12.x<8【解析】解:依题意得:3x﹣6<18,解得x<8.故答案为:x<8.13.【解析】先解不等式组,再根据整数解的情况求出a的取值范围.【详解】,解不等式①,得x>2,解不等式②,得x<10+6a,所以不等式组的解集是2<x<10+6a,因为不等式组有三个整数解,所以5<10+6a≤6,解得.故答案为:.【点睛】主要考查学生对不等式组知识点的掌握.解不等式组,整理出x的取值范围分析整数解情况为解题关键.14.6【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰;分别找出符合题意的点C即可.【详解】解:如图,分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有,,共2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有,,,,共4个.故答案为:6.15.【解析】【分析】作DE垂直于x轴,DF垂直于y轴,根据勾股定理求出BO,根据旋转性质和等腰三角形性质得AB=AC,∠ADC=90°,BD=CD,设D(x,y),根据勾股定理得,再根据待定系数法求解.【详解】作DE垂直于x轴,DF垂直于y轴在Rt△ABO中,BO=由旋转性质可得AB=AC,∠ADC=90°又因为所在直线经过点,所以BD=CD设D(x,y)根据勾股定理可得即①-②,得-6x+8y=0所以③把③代入①,得解得或x=0(舍去)把代入③得所以D(,)设直线的解析式为y=kx+4,则解得所以故答案为:【点睛】考核知识点:一次函数与方程组.利用勾股定理和待定系数法求解是关键.16.(1),数轴见解析;(2),整数解0,1,2,3.【解析】【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,继而可得其整数解.【详解】解:(1)去分母,得去括号,得移项,得合并同类项,得两边都除以,得这个不等式的解集在在数轴上表示如图所示(2)解不等式①,得解不等式②,得在同一数轴上表示不等式①②的解集,如图所示:所以,不等式组的解集是:该不等式组的所有整数解为0,1,2,3.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(1)20°;(2);(3)底边所在直线,顶角的一半【解析】【分析】(1)根据等腰三角形性质可得∠B=70°,再根据线段垂直平分线的性质得到∠M=90°-∠B=20°;(2)与(1)同理,可得∠M=90°-∠B=90°-(180°-)=;(3)结合(1)(2)可得到:等腰三角形一腰的垂直平分线与底边所在直线相交所成的锐角等于顶角的一半.【详解】(1)∵∠A=40°,AB=AC,∴∠B=(180°-∠A)=(180°-40°)=70°,∵MN是AB的垂直平分线,∴MN⊥AB,∴∠M=90°-∠B=90°-70°=20°;(2)如果(),∵,AB=AC,∴∠B=(180°-∠A)=(180°-),∵MN是AB的垂直平分线,∴MN⊥AB,∴∠M=90°-∠B=90°-(180°-)=;(3)由(1)和(2)可得规律:等腰三角形一腰的垂直平分线与底边所在直线相交所成的锐角等于顶角的一半.【点睛】考核知识点:等腰三角形性质.熟记等腰三角形性质和线段垂直平分线性质是关键.18.见解析【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】解:∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.19.(1)16,284;(2)8;(3)共有3种租车方案∶方案一∶租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二∶租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三∶租用甲种客车1辆,乙种客车7辆,租车费用为3100元;最节省费用的租车方案是∶租用甲种客车3辆,乙种客车5辆【解析】【分析】(1)设老师有x名,学生有y名,根据若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生列出方程组,求解即可;(2)每辆客车上至少要有2名老师,而老师的总数量是16,故汽车总数不能大于8辆;老师和学生一共300人,要保证所有师生都有车坐,故汽车总数不能小于辆,综合起来可知汽车总数为8辆;(3)设租用x辆乙种客车,则甲种客车数为∶(8-x)辆,由租车总费用不超过3100元,为使300名师生都有座,列出不等式组,求解得出其整数解即可得出答案.【详解】解:(1)解∶设老师有x名,学生有y名,依题意,列方程组为解得∶答∶老师有16名,学生有284名.(2)因为每辆客车上至少要有2名老师,所以汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于(取整为8)辆,综合起来可知汽车总数为8辆,故答案为∶8;(3)解∶设租用x辆乙种客车,则甲种客车数为∶(8-x)辆,因为车总费用不超过3100元,所以400x+300(8-x)≤3100,解得∶x≤7,为使300名师生都有座,所以42x+30(8-x)≥300,解得∶x≥5,所以5≤x≤7(x为整数),所以共有3种租车方案∶方案一∶租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二∶租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三∶租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是∶租用甲种客车3辆,乙种客车5辆.【点睛】本题考查了二元一次方程组的应用和差倍分问题、一元一次不等式组的应用,解题的关键是理解题意,列出方程或不等式.20.(1);(2)2+2【解析】【分析】(1)连接CD,构造矩形ACBD和Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,进而求得PA+PB+PC的最小值.【详解】如图,连接CD∵△BCP沿射线CA方向平移,得到△DAE,∴BC∥AD且BC=AD,∵∠ACB=90°,∴四边形BCAD是矩形,∴CD=AB=6,∵BP=3,∴DE=BP=3,∵BP⊥CE,BP∥DE,∴DE⊥CE,∴在Rt△DCE中,CE=故答案为:(2)如图所示,以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN.那么就将PA+PB+PC的值转化为CP+PM+MN的值,连接CN,当点P落在CN上时,PA+PB+PC的值最小.由旋转可得,△AMN≌△ABP,∴MN=BP,PA=AM,∠PAM=60°=∠BAN,AB=AN,∴△PAM、△ABN都是等边三角形,∴PA=PM,∴PA+PB+PC=CP+PM+MN,当AC=BC=4时,AB=4,当C、P、M、N四点共线时,由CA=CB,NA=NB可得CN垂直平分AB,∴AQ=AB=2=CQ,NQ=,AQ=2,∴此时CN=CP+PM+MN=PA+PB+PC=2+2.【点睛】本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.21.(1)E(3,4)(2)存在,AM+MN的最小值是【解析】【分析】(1)根据翻折特点可得∠DOB=∠AOB,由平行性质可得∠OBC=∠DOB,故EO=EB,设OE=x,则DE=8-x,根据勾股定理得,DB2+DE2=BE2,即16+(8-x)2=x2,可进一步求出E的坐标;(2)过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值,结合(1),根据面积有DE×BD=BE×DG,故DG=,得GN=OC=4,可求出DN=DG+GN.【详解】(1)∵将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E.∴∠DOB=∠AOB∵BC∥OA∴∠OBC=∠AOB∴∠OBC=∠DOB∴EO=EB∵长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4)设OE=x,则DE=8-x在Rt△BDE中,BD=4,根据勾股定理得,DB2+DE2=BE2∴16+(8-x)2=x2∴x=5∴BE=5∴CE=3∴E(3,4)(2)如图过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值由(1)得,DE=3,BE=5,BD=4∴根据面积有DE×BD=BE×DG∴DG=由题意有,GN=OC=4∴DN=DG+GN=即:AM+MN的最小值是.【点睛】考核知识点:轴对称,勾股定理.根据图形信息,把问题转化为解直角三角形问题是关键.22.(1)证明见解析;(2)30°;(3)32.【解析】【详解】试题分析:(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)首先利用三角形内角和求得∠ABC的度数,然后减去∠ABD的度数即可得到答案;(3)将△ABC的周长转化为AB+AC+BC的长即可求得.试题解析:(1)∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°-40°)÷2="70°"∴∠DBC=∠ABC-∠ABD=70°-40°=30°;(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AE=12,∵△CBD的周长为20,∴AC+BC=20,∴△ABC的周长=AB+AC+BC=12+20=32.考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质.23.(1)2,轴,;(2)90°【解析】【分析】(1)直接利用平移、对称,旋转的定义求解即可;(2)根据△AOC和△DOB是能够重合的等边三角形得到AO=DO,然后利用∠AOC=∠COD=60°得到OE⊥AD,从而得到∠AEO=90°.【详解】解:(1)边长为的等边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论