版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
答案第=page11页,共=sectionpages22页北师大版七年级下册数学期末考试试卷一、单选题1.下列运算中,结果正确的是(
)A.B.C.D.2.以下是各种交通标志指示牌,其中不是轴对称图形的是()A.B.C.D.3.用科学记数法表示0.000000202是()A.B.C.D.4.下列算式能用平方差公式计算的是()A.B.C.D.5.已知三角形的两边分别为4和10,则此三角形的第三边可能是()A.4B.5C.9D.146.下列事件中是确定事件的为()A.三角形的内角和是360°B.打开电视机正在播放动画片C.车辆随机经过一个路口,遇到绿灯D.掷一枚均匀的骰子,掷出的点数是奇数7.小红用如图所示的方法测量小河的宽度.她利用适当的工具,使AB⊥BC,BO=OC,CD⊥BC,点A、O、D在同一直线上,就能保证△ABO≌△DCO,从而可通过测量CD的长度得知小河的宽度AB.在这个问题中,判断△ABO≌△DCO的最佳依据是()A.SASB.AASC.ASAD.SSS8.下列说法正确的个数有()①内错角相等;②从直线外一点到这条直线的垂线段,叫做这点到直线的距离;③同一平面内,过一点有且只有一条直线与已知直线垂直;④等腰三角形的对称轴是角平分线所在直线;⑤一个角的补角一定是钝角;⑥三角形的中线、角平分线都在三角形的内部;⑦三角形三条高相交于一点;⑧若,则A.2个B.3个C.4个D.5个9.已知某海水淡化厂淡水储备量为20吨时,刚开始以每小时10吨的淡化的速度加工生产淡水,2小时后,在继续原速度的生产的前提下,为供给市场以每小时15吨的速度运出淡水,则储备淡水量(吨与时间(时之间的大致图象为()A.B.C.D.10.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论:①BD=CD;②AD+CF=BD;③AE=BG;④CE=BF.其中正确的是()A.①②B.①②④C.①②③④D.①③二、填空题11.计算的结果为__________.12.若某长方体底面积是60(),高为h(cm),则体积V()与h的关系式为_____.13.如图,小明在以为顶角的等腰三角形中用圆规和直尺作图,作出过点的射线交于点,然后又作出一条直线与交于点,连接,若的面积为4,则的面积为________.14.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,其中是女生的概率为_____.15.化简:(x+1)2+2(1-x)=_______________.16.如图,等边△ABC的边长为1,AB边上有一点P,Q为BC延长线上的一点,且CQ=PA,过点P作PE⊥AC于点E,过P作PF∥BQ交AC边于点F,连接PQ交AC边于点D,则DE的长为_____.三、解答题17.计算:(1)(﹣3)2+(π﹣3.14)0×(﹣1)2019﹣()-2(2)18.先化简,再求值:,其中,.19.如图,在△ABC中,∠C=90°,DB⊥BC于点B,分别以点D和点B为圆心,以大于二分之一DB的长为半径作弧,两弧相交于点E和点F,作直线EF,延长AB交EF于点G,连接DG,下面是说明∠A=∠D的说理过程,请把下面的说理过程补充完整:因为DB⊥BC(已知)所以∠DBC=90°()因为∠C=90°(已知)所以∠DBC=∠C(等量代换)所以DB∥AC()所以∠A=(______________________________);由作图法可知:直线EF是线段DB的所以GD=GB所以∠1=()因为∠A=∠1(已知)所以∠A=∠D(___________).20.一个不透明的袋子里装有黑白两种颜色的球共只,这些球除颜色外都相同.小明从袋子中随机摸一个球,记下颜色后放回,不断重复,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题:(1)摸到黑球的频率会接近____________(精确到),估计摸一次球能摸到黑球的概率是_____________;袋中黑球的个数约为_________只;(2)若小明又将一些相同的黑球放进了这个不透明的袋子里,然后再次进行摸球试验,当重复大量试验后,发现黑球的频率稳定在左右,则小明后来放进了____________个黑球.21.某商店实行有奖销售,印有1万张奖券,其中有10张一等奖,50张二等奖,500张三等奖,其余均无奖,任意抽取一张,(1)获得一等奖的概率有多大?(2)获奖的概率有多大?(3)如果使得获三等奖的概率为,那么需要将多少无奖券改为三等奖券22.(1)如图,已知△ABC,∠C为直角,AC<BC,D为BC上一点,且到A,B两点的距离相等.①用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);②连结AD,若∠B=37°,求∠CAD的度数.(2)已知,在△ABC中,AB=AC,点D、E分别在AB、AC边上,且BD=CE,证明OB=OC.23.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)AP=________cm,BP=__________cm(用含t的代数式表示)(2)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(3)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.24.如图1,已知:AB∥CD,点E,F分别在AB,CD上,且OE⊥OF.(1)求证:∠1+∠2=90°;(2)如图2,分别在OE,CD上取点G,H,使FO平分∠CFG,EO平分∠AEH,求证:FG∥EH.25.为了了解某种车的耗油量,我们对这种车在高速公路上做了耗油实验,并把实验的数据记录下来,制成下表:汽车行驶时间x(h)0123…邮箱剩余油量y(L)100948882…(1)根据上表的数据,请写出y与x的之间的关系式:__________________________________;(2)如果汽车油箱中剩余油量为46L,则汽车行驶了多少小时?(3)如果该种汽车油箱只装了36L汽油,汽车以100km/h的速度在一条全长700公里的高速公路上均匀行驶,请问它在中途不加油的情况下能从高速公路起点开到高速公路终点吗?为什么?参考答案1.C【解析】根据同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法计算即可.【详解】A.,故本选项错误;
B.,故本选项错误;
C.,故本选项正确;
D.,故本选项错误.故选C.【点睛】此题考查的是幂的运算性质,掌握同底数幂的除法、积的乘方、幂的乘方、同底数幂的乘法是解决此题的关键.2.B【解析】根据轴对称图形的概念对各选项逐一进行分析判断即可得出答案.【详解】A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称图形,掌握轴对称图形的概念:轴对称图形是图形两部分沿对称轴折叠后可重合的图形是解题的关键.3.D【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.故选:D.【点睛】本题考查了用科学记数法表示较小的数,解题的关键是是掌握一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D【解析】【分析】根据平方差公式进行的特点对每一选项进行分析即可.平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.【详解】解:.该式子中两项均为相反项,不能用平方差公式计算,故本选项不符合题意..该式子中只有一个相同项,没有相反项,不能用平方差公式计算,故本选项不符合题意..该式子中既没有相同项,也没有相反项,不能用平方差公式计算,故本选项不符合题意..,既有相同项,也有相反项,能用平方差公式计算,故本选项符合题意.故选:D.【点睛】本题考查了平方差公式,运用平方差公式计算时,解题的关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.5.C【解析】【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边,故,便可找到答案.【详解】解:根据题意,有:即:综合选项,故本题选择C.【点睛】本题考查三边关系,关键在于掌握两边之和大于第三边,两边之差小于第三边是关键.6.A【解析】【分析】根据确定事件和随机事件的定义对各选项逐一分析即可.【详解】解:A、三角形的内角和是360°是不可能事件,即确定事件,符合题意;、打开电视机正在播放动画片为不确定事件,即随机事件,故不符合题意;、车辆随机经过一个路口,遇到绿灯为不确定事件,即随机事件,故不符合题意;、掷一枚均匀的骰子,掷出的点数是奇数为不确定事件,即随机事件,故不符合题意;故选:A.【点睛】本题考查了确定事件和随机事件的定义,解决本题的关键是要明确事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.C【解析】【分析】直接利用全等三角形的判定方法得出符合题意的答案.【详解】解:,,,在和中,,,则证明的依据的是,故选:C.【点睛】本题考查了全等三角形的判定,解题的关键是正确掌握全等三角形的判定方法.8.A【解析】【分析】根据平行线的性质对①进行判断;根据点到直线的距离的定义对②进行判断;根据垂直公理对③进行判断;根据等腰三角形的性质对④进行判断;利用特例对⑤进行判断;根据三角形中线、角平分线的定义对⑥进行判断;利用钝角三角形的高所在的直线相交于一点可对⑦进行判断;利用没有对应的图形可对⑧进行判断.【详解】解:两直线平行,内错角相等,所以①错误;从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离,所以②错误;同一平面内,过一点有且只有一条直线与已知直线垂直,所以③正确;等腰三角形的对称轴是顶角的平分线所在直线,所以④错误;一个角的补角不一定是钝角,如的补角为,所以⑤错误;三角形的中线、角平分线都在三角形的内部,所以⑥正确;三角形三条高所在的直线相交于一点,所以⑦错误;若,则,没有图形,所以⑧错误.故选:A.【点睛】本题考查了对称的性质、轴对称图形、等腰三角形的性质、平行线的判定,解题的关键是掌握相关的概念,对称的性质:如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.9.D【解析】【分析】根据题意,可以写出各段对应的函数解析式,从而可以解答本题.【详解】解:由题意可得,当时,,当时,,当时,,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.B【解析】【分析】由等腰直角三角形的性质可得,利用判定,可得,.则,即;再利用判定,得出,可得,连接.因为是等腰直角三角形,即.又因为,那么垂直平分.即.在中,是斜边,是直角边,所以.即.【详解】解:,,是等腰直角三角形..故①正确;在和中,,,且,,在和中,,,,,,;故②正确;平分,.在和中,,,.又,;故④正确;连接.是等腰直角三角形,又,垂直平分,,在中,是斜边,是直角边,,,.故③错误.故选:B.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,解题的关键是熟练运用全等三角形的判定方法.11.或【解析】【分析】先计算积的乘方,再进行单项式除以单项式的运算即可得到答案.【详解】,故答案为:或.【点睛】此题主要考查了积的乘方和单项式除以单项式,熟练掌握运算法则是解答此题的关键.12.【解析】【分析】根据长方体的体积底面积高得出即可.【详解】解:根据题意得:,故答案为:.【点睛】本题考查了函数关系式、长方体的体积,解题的关键是熟记长方体的体积公式.13.1【解析】【分析】根据三角形的中线平分三角形的面积解决问题即可.【详解】解:由作图可知,平分,,,,由作图可知,,.故答案为:1.【点睛】本题考查作图复杂作图,等腰三角形的性质的性质等知识,解题的关键是理解三角形的中线平分三角形的面积.14.【解析】【详解】分析:根据概率公式用女生人数除以总人数即可得结论.详解:所有等可能结果共有6种,其中女生有2种,∴恰好是女生的概率为.
故答案为.点睛:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.x2+3【解析】【详解】分析:先用完全平方公式和乘法分配律展开,然后合并同类项即可.详解:原式=x2+2x+1+2-2x=x2+3.故答案为x2+3.点睛:本题考查了整式的混合运算.熟练掌握相关运算法则是解题的关键.16.【解析】【分析】通过求证和全等,推出,再通过证明是等边三角形和,推出,即可推出,可得,即可推出的长度.【详解】解:,,等边,,,是等边三角形,,,,在和中,,,,于,是等边三角形,,,,,.故答案为:.【点睛】本题考查了等边三角形的判定与性质、平行线的性质、全等三角形的判定与性质,解题的关键在于正确地作出辅助线,熟练运用相关的性质、定理,认真地进行计算.17.(1);(2)【解析】【分析】(1)根据有理数的乘方法则、零指数幂和负整数指数幂的运算法则计算即可;(2)根据单项式乘单项式的运算法则、单项式除以单项式的运算法则、积的乘方法则计算.【详解】解:(1)原式;(2)原式.【点睛】本题考查了实数的运算、整式的运算,解题的关键是掌握有理数的乘方法则、零指数幂和负整数指数幂的运算法则、单项式乘单项式的运算法则、单项式除以单项式的运算法则.18.,【解析】【分析】根据整式的运算法则即可化简求解.【详解】解:原式=
=
=其中,原式=
=-2-28=-30【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的乘法公式.19.垂线的定义,内错角相等两直线平行,,两直线平行同位角相等,垂直平分线,,等边对等角,等量代换.【解析】【分析】利用垂线的定义,平行线的判定和性质,线段的垂直平分线的性质等知识求解即可.【详解】解:因为(已知),所以(垂线的定义).因为(已知),所以(等量代换).所以(内错角相等两直线平行).所以(两直线平行同位角相等).由作图法可知:直线是线段的垂直平分线,所以.所以(等边对等角).因为(已知),所以(等量代换).故答案为:垂线的定义,内错角相等两直线平行,,两直线平行同位角相等,垂直平分线,,等边对等角,等量代换.【点睛】本题考查作图复杂作图,平行线的判定和性质,线段的垂直平分线的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(1)0.4,0.4;20;(2)25【解析】【分析】(1)根据统计图找到摸到黑球的频率稳定到的常数即为摸到黑球的概率;用总数乘以摸到黑球的频率即可得到黑球的个数;(2)设向袋子中放入了x个黑球,根据摸到黑球最终稳定的频率即为概率的估计值,列出方程求解可得.【详解】(1)观察发现:随着实验次数的增加频率逐渐稳定到常数0.4附近,故摸到黑球的频率会接近0.4.袋中黑球的个数约为50×0.4=20(只).(2)设放入黑球x个,根据题意得:0.6,解得:x=25,经检验:x=25是原方程的根.故答案为:25.【点睛】本题考查了概率公式和频率估计概率,熟练掌握概率公式:概率等于所求情况数与总情况数之比是解答本题的关键.21.(1);(2);(3)【解析】【分析】任取一张有1万种情况,其中抽到一等奖有10种情况,二等奖有50种情况,三等奖有500种情况,利用概率公式进行计算即可.【详解】解:(1)获一等奖的概率是,(2)获奖的概率是,(3)设需要将无奖券改为三等奖券,则:,解得:.【点睛】本题考查了利用概率公式求概率,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A),难度适中.22.(1)①见解析;②;(2)见解析【解析】【分析】(1)①作线段的垂直平分线交于点,连接即可.②求出,,可得结论.(2)证明,推出,再证明,即可解决问题.【详解】解:(1)①如图,点即为所求.②垂直平分线段,,,,,.(2),,,在和中,,,,,,.【点睛】本题考查作图复杂作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.23.(1),;(2),,理由见解析;(3),;,在线段中点,.【解析】【分析】(1)根据路程时间速度求解.(2)利用三角形全等的判定条件,判断两个三角形是否全等.(3)此处判断两个三角形全等用,需要分情况讨论对应边.【详解】解:(1)点运动速度为,运动走的路程为,长度为7,,故答案为,.(2),.证明:点的运动速度与点的运动速度相等,当时,,,,,,,,,(3),与全等,需要满足下面条件之一:①,,即,,,,,,②,,即,,,,,,在线段中点,.【点睛】本题考查了三角形全等的判定和性质和动点相结合,解题的关键是全等知识点熟练应用和动点的情况分析.24.(1)证明见解析(2)证明见解析【解析】【分析】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科研机构行业实验室安全保障
- 咨询服务保安员工作总结
- 公司注册代理合同三篇
- 动漫游戏行业会计的特点总结
- 2023年浙江省杭州市公开招聘警务辅助人员辅警笔试自考题2卷含答案
- 《合理使用中成药》课件
- 高三学习计划书
- 河北省唐山市(2024年-2025年小学六年级语文)统编版随堂测试(下学期)试卷及答案
- 2024年防沉剂项目资金筹措计划书
- 顾客检查表(完整版)
- 消费型股东招募计划书
- 2022-2023学年江苏省连云港市九年级(上)期末数学试卷(含详细答案解析)
- 会计事务所述职报告
- 2022年江苏普通高中学业水平选择性考试政治真题及答案
- 玻璃工业的节能减排与绿色制造
- 防止交叉感染的护理措施和策略
- 苏教译林版四年级英语上册单词默写表
- 金属冶炼中的领导潜能与领导力发展策略
- 上海市浦东新区部分学校联考2023-2024学年七年级上学期期末考试数学试题
- 南京理工大学物理化学课程考试8套卷(含答案)
- dcm法加固水下软基施工过程监控与质量控制
评论
0/150
提交评论