版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专练08方程、概率、函数应用题(20题)1.(2020·黑龙江九年级期末)齐齐哈尔新玛特商场购进大嘴猴品牌服装每件成本为100元,在试销过程中发现:销售单价元,与每天销售量(件)之间满足如图所示的关系.(1)求出与之间的函数关系式(不用写出自变量的取值范围);(2)写出每天的利润(元)与销售单价之间的函数解析式;并确定将售价定为多少元时,能使每天的利润最大,最大利润是多少?【答案】(1);(2),售价定为140元∕件,每天获得最大利润为1600元解:解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知:,解得:,故y与x的函数关系式为;(2)∵,∴W===,∴当x=140时,W最大=1600,∴售价定为140元/件时,每天最大利润W=1600元.【点睛】本题考查的是二次函数的应用,根据题意列出关于k、b的关系式是解答此题的关键.2.(2020·广西九年级期末)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?【答案】(1)20%;(2)能.(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用增长率问题,根据题意寻找相等关系列方程是关键,难度不大.3.(2019·成都七中实验学校九年级期末)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?【答案】(1)35元;(2)30元.解:(1)由题意,得:W=(x-20)×y=(x-20)(-10x+500)=-10x2+700x-10000=-10(x-35)2+2250当x=35时,W取得最大值,最大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:,解得:,,销售单价不得高于32元,销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.【点睛】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.4.(2020·湖南武冈市第一中学九年级期末)等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.(1)求出S关于t的函数关系式;(2)当点P运动几秒时,S△PCQ=S△ABC?(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.【答案】(1)S=(t<10),(t>10);(2);(3)不变,理由参见解析.解:(1)当t<10秒时,P在线段AB上,如图1,此时CQ=t,PB=10-tS△PCQ=CQ•PB.∴s=×t×(10−t)=(10t−t2)当t>10秒时,P在线段AB得延长线上如图2,此时CQ=t,PB=t-10S△PCQ=CQ•PB.∴s=×t×(t−10)=(t2−10t)(2)∵S△ABC=AB•BC=50∴当t<10秒时,S△PCQ=(10t−t2)=50整理得t2-10t+100=0无解当t>10秒时,S△PCQ=(t2−10t)=50整理得t2-10t-100=0解得x=5±5(舍去负值)∴当点P运动5+5秒时,S△PCQ=S△ABC.(3)当点P、Q运动时,线段DE的长度不会改变证明:过Q作QM⊥AC,交直线AC于点M在Rt△APE和Rt△QCM中
∵∠A=45°,∠QCM=∠ACB=45°
∴∠A=∠QCM∵AP=QC=t,∠QMC=∠AEP=90°∴△APE≌△QCM∴AE=PE=CM=QM=t,∴四边形PEQM是平行四边形,且DE是对角线EM的一半又∵EM=AC=10∴DE=5∴当点P、Q运动时,线段DE的长度不会改变同理,当点P在点B右侧时,DE=5
综上所述,当点P、Q运动时,线段DE的长度不会改变.5.(2020·保定市第二十一中学九年级期末)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霸天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度的统计图对雾霾天气了解程度的统计图对雾霾天气了解程度的统计表对雾霾天气了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解请结合统计图表,回答下列问题:(1)本次参与调查的学生共有______人,______;(2)请补全条形统计图;(3)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为奇数,则小明去,否则小刚去,请用画树状图或列表说明这个游戏规则是否公平.【答案】(1)400,35%;(2)条形统计图见解析;(3)不公平.解:(1)由统计图可知:A等级的人数为20,所占的百分比为5%则本次参与调查的学生共有20÷5%=400人;1-5%-15%-45%=35%;(2)由统计图可知:A等级的人数所占的百分比为45%D等级的人数为400×35%=140(人)补全条形统计图如下:(3)根据题意画出树状图如下:可发现共有12种等可能的结果且和为奇数的结果有8种所以小明去的概率为:小刚去的概率为:.由>.所以这个游戏规则不公平.【点睛】本题考查了游戏的公平性,先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平,这是解答游戏公平性题目的关键.6.(2020·贵州九年级期末)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=,n=;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?(4)已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【答案】(1)100、35;(2)补图见解析;(3)800人;(4)【解析】详解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=×100%=35%,即n=35,(2)网购人数为100×15%=15人,微信对应的百分比为×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人;(4)列表如下:共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为.点睛:本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.(2019·浙江九年级期末)为响应垃圾分类处理,改善生态环境,某小区将生活垃圾分成三类:厨余垃圾、可回收垃圾和其他垃圾,分别记为a,b,c,并且设置了相应的垃圾箱,“厨余垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为A,B,C(1)小明将垃圾分装在三个袋中,任意投放,用画树状图或列表的方法求把三个袋子都放错位置的概率是多少?(2)某学习小组为了了解居民生活垃圾分类投放的情况,现随机抽取了某天三类垃圾箱中总共100吨的生活垃圾,数据统计如表(单位:吨):ABCa401010b3243c226调查发现,在“可回收垃圾”中塑料类垃圾占10%,每回收1吨塑料类垃圾可获得0.7吨二级原料,某城市每天大约产生200吨生活垃圾假设该城市每天处理投放正确的垃圾,每天大概可回收多少吨塑料类垃圾的二级原料?【答案】(1);(2)每天大概可回收3.36吨塑料类垃圾的二级原料.解:(1)画树状图如下:由树状图知,共有6种等可能结果,其中把三个袋子都放错位置的有2种结果,所以把三个袋子都放错位置的概率是=;(2)200××0.1××0.7=3.36(吨),答:每天大概可回收3.36吨塑料类垃圾的二级原料.【点睛】此题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.8.(2019·山东九年级期末)如图,在中,∠C=90°,AC=3,AB=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE始终保持垂直平分PQ,且交PQ于点D,交BC于点E.点P、Q同时出发,当点P到达点A时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t为何值时,?(2)求四边形BQPC的面积S与t的函数关系式;(3)是否存在某一时刻t,使四边形BQPC的面积与的面积比为13:15?若存在,求t的值.若不存在,请说明理由;(4)若DE经过点C,试求t的值.【答案】(1);(2);(3)1或2;(4).(1)由题意得:,,,,DE垂直平分PQ,,即,在和中,,,,即,解得,故当时,;(2)如图,过点Q作于点F,在中,,,在中,,即,解得,则四边形BQPC的面积,,,点P到达点A所需时间为(秒),点Q到达点B所需时间为(秒),且当点P到达点A时停止运动,点Q也随之停止,,又当或时,不存在四边形BQPC,,故四边形BQPC的面积S与t的函数关系式;(3),,即,解得或,故当或时,四边形BQPC的面积与的面积比为;(4)如图,过点Q作于点H,连接CQ,,,,,即,解得,,垂直平分PQ,,在中,,即,解得.【点睛】本题考查了相似三角形的判定与性质、正弦三角函数、垂直平分线的性质、解一元二次方程等知识点,较难的是题(4),通过作辅助线,构造相似三角形和直角三角形是解题关键.9.(2019·山东九年级期末)如图,在一条河流的两岸分别有A、B、C、D四棵景观树,已知AB//CD,某数学活动小组测得∠DAB=45°,∠CBE=73°,AB=10m,CD=30m,请计算这条河的宽度(参考数值:,,)【答案】m分别过C,D作CF⊥AE于F,DG⊥AE于F,
∴∠AGD=∠BFC=90°,
∵AB∥CD,
∴∠FCD=90°,
∴四边形CFGD是矩形,
∴CD=FG=30m,CF=DG,
在直角三角形ADG中,∠DAG=45°,
∴AG=DG,
在直角三角形BCF中,∠FBC=73°,
∴,
∴,
∵AG=AB+BF+FG=DG,
即10+BF+30=,
解得:BF=m,则,
答:这条河的宽度为m.【点睛】本题考查解直角三角形的应用,要求学生能借助辅助线构造直角三角形并解直角三角形.10.(2019·山东九年级期末)为了维护国家主权,海军舰队对我国领海例行巡逻.如图,正在执行巡航任务的舰队以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔在北偏东30°方向上.(1)求∠APB的度数.(2)已知在灯塔P的周围40海里范围内有暗礁,问舰队继续向正东方向航行是否安全?【答案】(1);(2)安全.(1)如图,过点P作于点C,由题意得:海里,,,;(2)由垂线段最短可知,若海里,则舰队继续向正东方向航行是安全的,设海里,在中,,即,解得,在中,,即,解得,,,解得,即海里,,舰队继续向正东方向航行是安全的.【点睛】本题考查了方位角、平行线的判定与性质、解直角三角形等知识点,较难的是题(2),将问题正确转化为求PC的长是解题关键.11.(2020·江苏九年级期末)如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为,吊灯底端B的仰角为,从C点沿水平方向前进6米到达点D,测得吊灯底端B的仰角为.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)【答案】吊灯AB的长度约为1.1米.解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=BD=3(米),在Rt△AEC中,tan∠ACE=,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.12.(2020·甘肃九年级期末)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置P的铅直高度PB.(测倾器高度忽略不计,结果保留根号形式)【答案】OC=100米;PB=米.解:过点P作PF⊥OC,垂足为F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),由坡度=1:2,设PB=x,则AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【点睛】本题考查的知识点是解直角三角形的应用,关键要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.13.(2019·山东九年级期末)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA,顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间的关系式可以用表示,且抛物线经过点B,C;(1)求抛物线的函数关系式,并确定喷水装置OA的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【答案】(1),米;(2)米;(3)至少要米.(1)由题意,将点代入得:,解得,则抛物线的函数关系式为,当时,,故喷水装置OA的高度米;(2)将化成顶点式为,则当时,y取得最大值,最大值为,故喷出的水流距水面的最大高度是米;(3)当时,,解得或(不符题意,舍去),故水池的半径至少要米,才能使喷出的水流不至于落在池外.【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.14.(2020·保定市第三中学分校九年级期末)某种蔬菜的售价(元)与销售月份之间的关系如图所示,成本(元)与销售月份之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价成本)(2)设每千克该蔬菜销售利润为,请列出与之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?【答案】(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=,5月份出售这种蔬菜,每千克的收益最大为元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克.(1)当x=6时,y1=3,y2=1,∵y1-y2=3-1=2,∴6月份出售这种蔬菜每千克的利润是2元;(2)设y1=mx+n,y2=a(x-6)2+1,将(3,5)、(6,3)分别代入y1=mx+n,得,解得:,∴;将(3,4)代入y2=a(x-6)2+1,得,4=a(3-6)2+1,解得:a=,∴,∴P==,∵,∴当x=5时,P取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大,最大值为元;(3)当x=4时,P==2,设4月份的销售量为t千克,则5月份的销售量为(t+20000)千克,根据题意得:,解得:t=40000,∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为60000千克.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质等知识,综合性较强,弄清题意,读懂图象,灵活运用相关知识是解题的关键.15.(2019·黑龙江)如图,用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(矩形ABCD),墙长为22m,这个矩形的长AB=xm,菜园的面积为Sm2,且AB>AD.(1)求S与x之间的函数关系式,并写出自变量x的取值范围.(2)若要围建的菜园为100m2时,求该莱园的长.(3)当该菜园的长为多少m时,菜园的面积最大?最大面积是多少m2?【答案】(1)S=﹣x2+15x,10<x≤22;(2)菜园的长为20m;(3)该菜园的长为15m时,菜园的面积最大,最大面积是112.5m2.解:(1)由题意可知:AD=(30﹣x)∴S=AB•AD=x×(30﹣x)=﹣x2+15x自变量x的取值范围是10<x≤22.(2)当S=100时,﹣x2+15x=100解得x1=10,x2=20,又10<x≤22.∴x=20,答:该菜园的长为20m.(3)∵S=﹣x2+15x=﹣(x﹣15)2+又10<x≤22.∴当x=15时,S取得最大值,最大值为112.5.答:该菜园的长为15m时,菜园的面积最大,最大面积是112.5m2.【点睛】本题考查了二次函数的应用、一元二次方程的应用,解决本题的关键是理解题意列出二次函数解析式和方程.16.(2020·河南九年级期末)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【答案】这段河的宽约为37米.解:如图,延长CA交BE于点D,则,由题意知,,,设米,则米,米,在中,,,解得,答:这段河的宽约为37米.17.(2020·湖南九年级期末)为加强我市创建文明卫生城市宣传力度,需要在甲楼A处到E处悬挂一幅宣传条幅,在乙楼顶部D点测得条幅顶端A点的仰角∠ADF=45°,条幅底端E点的俯角为∠FDE=30°,DF⊥AB,若甲、乙两楼的水平距离BC为21米,求条幅的长AE约是多少米?(,结果精确到0.1米)【答案】33.1米解:过点D作DF⊥AB,如图所示:在Rt△ADF中,DF=BC=21米,∠ADF=45°∴AF=DF=21米在Rt△EDF中,DF=21米,∠EDF=30°∴EF=DF×tan30°=米∴AE=AF+BF=+21≈33.1米.答:条幅的长AE约是33.1米.【点睛】本题主要考查解直角三角形的应用,关键是根据题意及利用三角函数求出线段的长.18.(2020·湖南长沙同升湖实验学校九年级期中)为让同学们更好的了解电路,学校实验室购进一批蓄电池,已知蓄电池的电压为定值,同学们在实验过程中得到电流I(A)是电阻R()的反比例函数,其图象如图所示.(电压=电流×电阻)(1)求蓄电池的电压是多少?(2)若保证电路中的小灯泡发光所需要的电流的范围为,则求电路中能使小灯泡发光的电阻R的取值范围.【答案】(1)蓄电池的电压是36V;(2)电阻R的取值范围是.【详解】(1)蓄电池的电压是4×9=36,∴蓄电池的电压是36V;(2)电流I是电阻R的反比例函数,设,∵图象经过(9,4),
∴,∴,当I=2时,,当I=12时,,∵I随R的增大而减小,
∴电阻R的取值范围是:.【点睛】本题考查了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧化工园区方案
- 山东省东营市利津县2024-2025学年上学期期中考试八年级历史试题
- 《包装容器 聚对苯二甲酸乙二醇酯(PET)瓶坯》
- 广西壮族自治区百色市平果市2024-2025学年三年级上册期中考试语文试卷(无答案)
- 2024-2025学年第一学期期中考试初一生物问卷
- 磁粉离合器相关行业投资方案范本
- 期刊出版相关行业投资方案
- 移动党建述职报告2024
- 新媒体数字相关项目投资计划书
- 儿童心理发展的生物学基础课件
- 2024年商场员工管理制度(四篇)
- DB11T 1794-2020 医疗机构临床用血技术规范
- 质量为纲-华为公司质量理念与实践
- 政法系统领导干部专题读书班学习心得体会范文(三篇)
- 2022年6月英语四级真题 第一套
- 肝性脑病护理查房包含内容课件
- 幼儿园教师及工作人员健康档案
- 工业互联网安全技术 课件全套 魏旻 第1-9章 绪论、工业互联网安全体系架构 -工业互联网安全测试
- JBT 1306-2024 电动单梁起重机(正式版)
- 痛风病完整课件
- 痔疮患者治疗与护理
评论
0/150
提交评论