版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024-2025学年云南省云南大学附属中学数学九年级第一学期开学达标检测模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)用配方法解方程x2﹣2x﹣1=0,原方程应变形为()A.(x﹣1)2=2B.(x+1)2=2C.(x﹣1)2=1D.(x+1)2=12、(4分)如图,直线和直线相交于点,则不等式的解集为()A. B. C. D.3、(4分)爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与爷爷离开公园的时间x(分)之间的函数关系是()A. B.C. D.4、(4分)如图,将等腰直角三角形ABC绕点A逆时针旋转15度得到ΔAEF,若AC=,则阴影部分的面积为(
)A.1 B. C. D.5、(4分)如图,以正方形ABCD的边AD为一边作等边△ADE,则∠AEB等于()A.10° B.15° C.20° D.12.5°6、(4分)分式的计算结果是()A. B. C. D.7、(4分)若是三角形的三边长,则式子的值(
).A.小于0 B.等于0 C.大于0 D.不能确定8、(4分)某校田径运动会上,参加男子跳高的16名运动员成绩如下表:成绩(m)1.451.501.551.601.651.70人数343231则这些运动员成绩的中位数是()A.1.5 B.1.55 C.1.60 D.1.65二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据_____.10、(4分)将化成最简二次根式为______.11、(4分)如图,一根橡皮筋放置在x轴上,固定两端A和B,其中A点坐标(0,0),B点坐标(8,0),然后把中点C向上拉升3cm到D,则橡皮筋被拉长了_________cm.12、(4分)如图,在平面直角坐标系中,直线y=﹣4x+4与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=kx上;将正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线在第一象限的分支上,则a的值是_____13、(4分)化简的结果等于_____________.三、解答题(本大题共5个小题,共48分)14、(12分)直线是同一平面内的一组平行线.(1)如图1.正方形的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点,点分别在直线和上,求正方形的面积;(2)如图2,正方形的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为.①求证:;②设正方形的面积为,求证.15、(8分)如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD、又作平行四边形CFHD、CGKE.求证:H,C,K三点共线.16、(8分)银隆百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.(1)要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?(2)这次降价活动中,1200元是最高日利润吗?若是,请说明理由;若不是,请试求最高利润值.17、(10分)如图(1),在矩形中,分别是的中点,作射线,连接.(1)请直接写出线段与的数量关系;(2)将矩形变为平行四边形,其中为锐角,如图(2),,分别是的中点,过点作交射线于点,交射线于点,连接,求证:;(3)写出与的数量关系,并证明你的结论.18、(10分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点(1)在图1中以格点为顶点画一个面积为5的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)分解因式:m2nmn=_____。20、(4分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.21、(4分)函数是y关于x的正比例函数,则______.22、(4分)如图,在平面直角坐标系中,点A(0,4),将△ABO沿x轴向右平移得△A′B′O′,与点A对应的点A′正好落在直线y=上.则点B与点B′之间的距离为_____.23、(4分)如图,中,是的中点,平分,于点,若,,则的长度为_____.二、解答题(本大题共3个小题,共30分)24、(8分)如图,直线与直线相交于点A(3,1),与x轴交于点B.(1)求k的值;(2)不等式的解集是________________.25、(10分)如图,已知▱ABCD的对角线AC、BD相交于点O,其周长为16,且△AOB的周长比△BOC的周长小2,求AB、BC的长.26、(12分)如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.(1)求证:△ABF≌△DEF;(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】分析:先把常数项移到方程右侧,再把方程两边加上1,然后把方程左边利用完全公式表示即可.详解:x1﹣1x=1,x1﹣1x+1=1,(x﹣1)1=1.故选A.点睛:本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)1=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.2、C【解析】
写出直线y=kx(k≠0)在直线y=mx+n(m≠0)上方部分的x的取值范围即可.【详解】解:由图可知,不等式kx≥mx+n的解集为x≥2;故选:C.本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.3、B【解析】
由题意,爷爷在公园回家,则当时,;从公园回家一共用了45分钟,则当时,;【详解】解:由题意,爷爷在公园回家,则当时,;从公园回家一共用了分钟,则当时,;结合选项可知答案B.故选:B.本题考查函数图象;能够从题中获取信息,分析运动时间与距离之间的关系是解题的关键.4、C【解析】
利用旋转得出∠DAF=30°,就可以利用直角三角形性质,求出阴影部分面积.【详解】解:如图.设旋转后,EF交AB与点D,因为等腰直角三角形ABC中,∠BAC=90°,又因为旋转角为15°,所以∠DAF=30°,因为AF=AC=,所以DF=1,所以阴影部分的面积为.故选:C.5、B【解析】
根据正方形性质求出AB=AD,∠BAD=90°,根据等边三角形的性质得出∠EAD=60°,AD=AE=AB,推出∠ABE=∠AEB,根据三角形的内角和定理求出即可.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵三角形ADE是等边三角形,∴∠EAD=60°,AD=AE=AB,∴∠ABE=∠AEB,∵∠ABE+∠AEB+∠BAE=180°,∴∠AEB=12×(180°-90°-60°)=15故选:B.本题考查了等腰三角形的性质,三角形的内角和定理,正方形性质,等边三角形的性质的应用,关键是求出∠BAE的度数,通过做此题培养了学生的推理能力,题目综合性比较强,是一道比较好的题目.6、C【解析】
解决本题首先应通分,最后要注意将结果化为最简分式.【详解】解:原式=,故选C.本题考查了分式的加减运算,掌握运算法则是解题关键.7、A【解析】
先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.【详解】解:=(a-b+c)(a-b-c)根据三角形两边之和大于第三边,两边之差小于第三边,(a-c+b)(a-c-b)<0故选A.本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.8、B【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,据此可得.【详解】将这组数据从小到大的顺序排列后,处于中间位置的两个数都是1.55,那么由中位数的定义可知,这组数据的中位数是1.55(米).故选:B本题考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.二、填空题(本大题共5个小题,每小题4分,共20分)9、两组对边分別平行的四边形是平行四边形【解析】
根据平行四边形的判定方法即可求解.【详解】解:∵两块相同的含有30°角的三角尺∴AD=BC,AB=CD,∠ADB=∠DBC=90°,∠ABD=∠BDC=30°∴AB∥CD,AD∥BC∴四边形ABCD是平行四边形依据为:两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)故答案为两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)此题主要考查平行四边形的的判定,解题的关键是熟知平行四边形的判定定理.10、1【解析】
最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.【详解】化成最简二次根式为1.故答案为1本题考核知识点:简二次根式.解题关键点:理解简二次根式的条件.11、1【解析】
根据勾股定理,可求出AD、BD的长,则AD+BD-AB即为橡皮筋拉长的距离.【详解】Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5(cm);∴AD+BD-AB=1AD-AB=10-8=1cm;故橡皮筋被拉长了1cm.
故答案是:1.此题主要考查了等腰三角形的性质以及勾股定理的应用,解题的关键是理解题意,灵活运用所学知识解决问题.12、1【解析】
根据直线的关系式可以求出A、B的坐标,由正方形可以通过作辅助线,构造全等三角形,进而求出C、D的坐标,求出反比例函数的关系式,进而求出C点平移后落在反比例函数图象上的点G的坐标,进而得出平移的距离.【详解】当x=0时,y=4,∴B(0,4),当y=0时,x=1,∴A(1,0),∴OA=1,OB=4,∵ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,过点D、C作DM⊥x轴,CN⊥y轴,垂足为M、N,∴∠ABO=∠BCN=∠DAM,∵∠AOB=∠BNC=∠AMD=90°,∴△AOB≌△BNC≌△DMA(AAS),∴OA=DM=BN=1,AM=OB=CN=4∴OM=1+4=5,ON=4+1=5,∴C(4,5),D(5,1),把D(5,1)代入y=kx得:k=5∴y=5x当y=5时,x=1,∴E(1,5),点C向左平移到E时,平移距离为4﹣1=1,即:a=1,故答案为:1.考查反比例函数的图象和性质、正方形的性质、全等三角形的判定和性质以及平移的性质等知识,确定平移前后对应点C、E的坐标是解决问题的关键.13、【解析】
先确定3-π的正负,再根据二次根式的性质化简即可.【详解】解:∵3-π<0,∴.故答案为:.本题考查了二次根式的性质,属于基本题型,熟练掌握化简的方法是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)9或5;(2)①见解析,②见解析【解析】
(1)分两种情况:①如图1-1,得出正方形ABCD的边长为2,求出正方形ABCD的面积为9;②如图1-2,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,证明△ABE≌△BCF(AAS),得出AE=BF=2由勾股定理求出AB=,即可得出答案;(2)①过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,证明△ABE≌△BCF(AAS),得出AE=BF,同理△CDM≌△BCF(AAS),得出△ABE≌△CDM(AAS),得出BE=DM即可;②由①得出AE=BF=h2+h2=h2+h1,得出正方形ABCD的面积S=AB2=AE2+BE2,即可得到答案.【详解】解:(1)①如图,当点分别在上时,面积为:;②如图,当点分别在上时,过点B作EF⊥l1于E,交l4于F,则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,∴△ABE≌△BCF(AAS),∴AE=BF=2,∴AB=,∴正方形ABCD的面积=AB2=5;综上所述,正方形ABCD的面积为9或5;(2)①证明:过点B作EF⊥l1于E,交l4于F,作DM⊥l4于M,如图所示:则EF⊥l4,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,∵∠CBF+∠BCF=90°,∴∠ABE=∠BCF,在△ABE和△BCF中,,
∴△ABE≌△BCF(AAS),∴AE=BF,同理△CDM≌△BCF(AAS),∴△ABE≌△CDM(AAS),∴BE=DM,即h1=h2.②解:由①得:AE=BF=h2+h2=h2+h1,∵正方形ABCD的面积:S=AB2=AE2+BE2,∴S=(h2+h1)2+h12=2h12+2h1h2+h3.本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识;熟练掌握正方形的性质,证明三角形全等是解题的关键.15、证明见解析.【解析】
如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,QJ,JM,想办法证明四边形MNQJ是平行四边形即可解决问题;【详解】证明:如图,连接DE交AC于N,连接EG交KC于M,连接DF交CH于Q,连接FG交BC于J,连接MN,NQ,QJ,JM,DG.四边形AECD是平行四边形,,同法可证:,,,同法可证:,,,,四边形MNQJ是平行四边形,与MQ互相平分,,,,、C、Q共线,,C,K三点共线.本题考查平行四边形的性质和判定,三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.16、(1)每件童装应定价80元.(2)当降价15元,即以85元销售时,最高利润值达1250元.【解析】
(1)首先设每件降价x元,则每件实际盈利为(100-60-x)元,销售量为(20+2x)件,根据每件盈利×销售量=每天盈利,列方程求解,求出x的值,并根据题意“扩大销售量,减少内存”选择正确的定价.(2)设每天销售这种童装利润为y,利用上述关系式列出函数关系式,利用配方法即可求出何时有最高利润以及最高利润【详解】(1)设每件童装应降价x元,由题意得:(100−60−x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,答:每件童装应定价80元.(2)1200不是最高利润,y=(100−60−x)(20+2x)=−2x2+60x+800=−2(x−15)2+1250故当降价15元,即以85元销售时,最高利润值达1250元.此题考查了二次函数的应用以及一元二次方程的应用,利用函数关系和基本的数量关系列方程求解是本题的关键.17、(1)MD=MC;(2)见解析;(3)∠BME=3∠AEM,证明见解析.【解析】
(1)由“SAS”可证△ADM≌△BCM,可得MD=MC;(2)由题意可证四边形ADNM是平行四边形,可得AD∥MN,可得EF=FC,MF⊥EC,由线段垂直平分线的性质可得ME=MC;(3)由等腰三角形的性质和平行线的性质可得∠BME=3∠AEM.【详解】解:(1)∵四边形ABCD是矩形,∴AD=BC,∠A=∠B=90°,∵点M是AB中点,∴AM=BM,∴△ADM≌△BCM(SAS),∴MD=MC;(2)∵M、N分别是AB、CD的中点,∴AM=BM,CN=DN,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴DN=AM=CN=BM,∴四边形ADNM是平行四边形,∴AD∥MN,∴,∠AEC=∠NFC=90°,∴EF=CF,且MF⊥EC,∴ME=MC;(3)∠BME=3∠AEM,证明:∵EM=MC,EF=FC,∴∠EMF=∠FMC,∵AB=2BC,M是AB中点,∴MB=BC,∴∠BMC=∠BCM,∵MN∥AD,AD∥BC,∴AD∥MN∥BC,∴∠AEM=∠EMF,∠FMC=∠BCM,∴∠AEM=∠EMF=∠FMC=∠BCM=∠BMC,∴∠BME=3∠AEM.本题是四边形综合题,考查了平行四边形的判定和性质,矩形的性质,全等三角形的判定和性质,等腰三角形的性质等知识,(2)中证明EF=CF是本题的关键.18、(1)详见解析;(2)详见解析.【解析】
(1)直接利用勾股定理结合网格得出符合题意的图形,(2)直接利用勾股定理结合网格得出符合题意的图形.【详解】解:(1)如图1所示:正方形ABCD即为所求;(2)如图2所示:三角形ABC即为所求.本题考查了利用勾股定理求直角三角形的边长,熟练掌握定理即可求解.一、填空题(本大题共5个小题,每小题4分,共20分)19、n(m-)2【解析】
原式提取n,再利用完全平方公式分解即可.【详解】解:原式=n(m2-m+)=n(m-)2,
故答案为:n(m-)2此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20、【解析】
过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.21、1【解析】试题分析:因为函数是y关于x的正比例函数,所以,解得m=1.考点:正比例函数22、【解析】
根据平移的性质知BB′=AA′.由一次函数图象上点的坐标特征可以求得点A′的坐标,所以根据两点间的距离公式可以求得线段AA′的长度,即BB′的长度.【详解】解:如图,连接AA′、BB′.
∵点A的坐标为(0,1),△OAB沿x轴向右平移后得到△O′A′B′,
∴点A′的纵坐标是1.
又∵点A′在直线y=x上一点,
∴1=x,解得x=.
∴点A′的坐标是(,1),
∴AA′=.
∴根据平移的性质知BB′=AA′=.
故答案为.本题考查了平面直角坐标系中图形的平移,解题的关键是掌握平移的方向和平移的性质.23、1.【解析】
延长BD交AC于F,利用“角边角”证明△ADF和△ADB全等,根据全等三角形对应边相等可得AF=AB,BD=FD,再求出CF并判断出DE是△BCF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得.【详解】解:如图,延长BD交AB于F,∵AD平分∠BAC,∴∠BAD=∠FAD,∵BD⊥AD,∴∠ADB=∠ADF=90°,在△ADF和△ADB中∴△ADF≌△ADB(ASA),∴AF=AB,BD=FD,∴CF=AC-AB=6-4=2cm,又∵点E为BC的中点,∴DE是△BCF的中位线,.本题考查了三角形的中位线平行于第三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度小学教师工作总结-
- 元旦演讲稿800字【五篇】
- 2021年人事主管年终工作总结
- 2024平房出售合同范本全面保障交易双方权益3篇
- 北京教案模板锦集五篇
- 2024年度跨境电商知识产权保护合同签订与执行2篇
- 教务处主任个人工作总结
- 电话客服年终总结
- 社区个人世界献血日活动总结范文集锦
- 教师学期述职报告6篇
- 《奇效的敷脐疗法》课件
- 《压缩空气系统培训》课件
- 2024年学校师德师风培训课件:培育有温度的教育者
- 《客舱安全管理与应急处置》课件-第14讲 应急撤离
- 医疗技术新项目汇报
- 汽车租赁项目投标书
- 竣工验收流程培训课件
- 公司相互持股合同模板
- 幕墙工程全面策划创效指导清单
- 2024年四川省广安市中考物理试题含答案
- 北师大版(2019)数学必修第一册:8.1《走近数学建模》
评论
0/150
提交评论