高考总复习理数(人教版)第08章立体几何第7节空间向量的应用第1课时_第1页
高考总复习理数(人教版)第08章立体几何第7节空间向量的应用第1课时_第2页
高考总复习理数(人教版)第08章立体几何第7节空间向量的应用第1课时_第3页
高考总复习理数(人教版)第08章立体几何第7节空间向量的应用第1课时_第4页
高考总复习理数(人教版)第08章立体几何第7节空间向量的应用第1课时_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第一课时利用向量证明平行与垂直(对应学生用书P106)利用空间向量证明平行问题[明技法]证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.[提能力]【典例】(2018·南昌模拟)如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.证明:∵平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,∴AB,AP,AD两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),E(0,0,1),F(0,1,1),G(1,2,0).∴eq\o(PB,\s\up6(→))=(2,0,-2),eq\o(FE,\s\up6(→))=(0,-1,0),eq\o(FG,\s\up6(→))=(1,1,-1),设eq\o(PB,\s\up6(→))=seq\o(FE,\s\up6(→))+teq\o(FG,\s\up6(→)),即(2,0,-2)=s(0,-1,0)+t(1,1,-1),∴eq\b\lc\{\rc\(\a\vs4\al\co1(t=2,,t-s=0,,-t=-2,))解得s=t=2,∴eq\o(PB,\s\up6(→))=2eq\o(FE,\s\up6(→))+2eq\o(FG,\s\up6(→)),又∵eq\o(FE,\s\up6(→))与eq\o(FG,\s\up6(→))不共线,∴eq\o(PB,\s\up6(→)),eq\o(FE,\s\up6(→))与eq\o(FG,\s\up6(→))共面.∵PB⊄平面EFG,∴PB∥平面EFG.[母题变式]本例中条件不变,证明平面EFG∥平面PBC.证明:∵eq\o(EF,\s\up6(→))=(0,1,0),eq\o(BC,\s\up6(→))=(0,2,0),∴eq\o(BC,\s\up6(→))=2eq\o(EF,\s\up6(→)),∴BC∥EF.又∵EF⊄平面PBC,BC⊂平面PBC,∴EF∥平面PBC,同理可证GF∥PC,从而得出GF∥平面PBC.又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,∴平面EFG∥平面PBC.[刷好题](2018·唐山模拟)正方体ABCD-A1B1C1D1中,M,N分别是C1C,B1C1的中点.求证:MN∥平面A证明:如图所示,以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系.设正方体的棱长为1,则Meq\b\lc\(\rc\)(\a\vs4\al\co1(0,1,\f(1,2))),N(eq\f(1,2),1,1),D(0,0,0),A1(1,0,1),B(1,1,0),于是eq\o(MN,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),0,\f(1,2))),eq\o(DA1,\s\up6(→))=(1,0,1),eq\o(DB,\s\up6(→))=(1,1,0).设平面A1BD的法向量为n=(x,y,z),则n·eq\o(DA1,\s\up6(→))=0,且n·eq\o(DB,\s\up6(→))=0,得eq\b\lc\{\rc\(\a\vs4\al\co1(x+z=0,,x+y=0.))取x=1,得y=-1,z=-1.所以n=(1,-1,-1).又eq\o(MN,\s\up6(→))·n=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2),0,\f(1,2)))·(1,-1,-1)=0,所以eq\o(MN,\s\up6(→))⊥n.又MN⊄平面A1BD,所以MN∥平面A1BD.利用空间向量证明垂直问题[析考情]证明垂直问题的方法(1)利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.[提能力]【典例】如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC-A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.证明:方法一设平面A1BD内的任意一条直线m的方向向量为m.由共面向量定理,则存在实数λ,μ,使m=λeq\o(BA1,\s\up6(→))+μeq\o(BD,\s\up6(→)).令eq\o(BB1,\s\up6(→))=a,eq\o(BC,\s\up6(→))=b,eq\o(BA,\s\up6(→))=c,显然它们不共面,并且|a|=|b|=|c|=2,a·b=a·c=0,b·c=2,以它们为空间的一个基底,则eq\o(BA1,\s\up6(→))=a+c,eq\o(BD,\s\up6(→))=eq\f(1,2)a+b,eq\o(AB1,\s\up6(→))=a-c,m=λeq\o(BA1,\s\up6(→))+μeq\o(BD,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(λ+\f(1,2)μ))a+μb+λc,eq\o(AB1,\s\up6(→))·m=(a-c)·eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(λ+\f(1,2)μ))a+μb+λc))=4eq\b\lc\(\rc\)(\a\vs4\al\co1(λ+\f(1,2)μ))-2μ-4λ=0.故eq\o(AB1,\s\up6(→))⊥m,结论得证.方法二取BC的中点O,连接AO.因为△ABC为正三角形,所以AO⊥BC.因为在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1,平面ABC∩平面BCC1B1=BC.所以AO⊥平面BCC1B1.取B1C1的中点O1,以O为原点,分别以eq\o(OB,\s\up6(→)),eq\o(OO1,\s\up6(→)),eq\o(OA,\s\up6(→))所在直线为x轴,y轴,z轴建立空间直角坐标系,如图所示,则B(1,0,0),D(-1,1,0),A1(0,2,eq\r(3)),A(0,0,eq\r(3)),B1(1,2,0).设平面A1BD的法向量为n=(x,y,z),eq\o(BA1,\s\up6(→))=(-1,2,eq\r(3)),eq\o(BD,\s\up6(→))=(-2,1,0).因为n⊥eq\o(BA1,\s\up6(→)),n⊥eq\o(BD,\s\up6(→)),故eq\b\lc\{\rc\(\a\vs4\al\co1(n·\o(BA1,\s\up6(→))=0,,n·\o(BD,\s\up6(→))=0))⇒eq\b\lc\{\rc\(\a\vs4\al\co1(-x+2y+\r(3)z=0,,-2x+y=0,))令x=1,则y=2,z=-eq\r(3),故n=(1,2,-eq\r(3))为平面A1BD的一个法向量,而eq\o(AB1,\s\up6(→))=(1,2,-eq\r(3)),所以eq\o(AB1,\s\up6(→))=n,所以eq\o(AB1,\s\up6(→))∥n,故AB1⊥平面A1BD.[刷好题]如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.证明:(1)如图所示,以O为坐标原点,以过O作BC的平行线为x轴,以射线OD为y轴正半轴,射线OP为z轴的正半轴建立空间直角坐标系O-xyz.则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4).于是eq\o(AP,\s\up6(→))=(0,3,4),eq\o(BC,\s\up6(→))=(-8,0,0),所以eq\o(AP,\s\up6(→))·eq\o(BC,\s\up6(→))=(0,3,4)·(-8,0,0)=0,所以eq\o(AP,\s\up6(→))⊥eq\o(BC,\s\up6(→)),即AP⊥BC.(2)连接MB,MC.由(1)知AP=5,又AM=3,且点M在线段AP上,所以eq\o(AM,\s\up6(→))=eq\f(3,5)eq\o(AP,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(9,5),\f(12,5))),又eq\o(BA,\s\up6(→))=(-4,-5,0),所以eq\o(BM,\s\up6(→))=eq\o(BA,\s\up6(→))+eq\o(AM,\s\up6(→))=eq\b\lc\(\rc\)(\a\vs4\al\co1(-4,-\f(16,5),\f(12,5))),则eq

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论