四川省雅安市雅安中学2024-2025学年高二上学期入学检测数学试卷_第1页
四川省雅安市雅安中学2024-2025学年高二上学期入学检测数学试卷_第2页
四川省雅安市雅安中学2024-2025学年高二上学期入学检测数学试卷_第3页
四川省雅安市雅安中学2024-2025学年高二上学期入学检测数学试卷_第4页
四川省雅安市雅安中学2024-2025学年高二上学期入学检测数学试卷_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省雅安中学高2023级高二上期入学检测数学试题一、单选题1.抛掷一枚质地均匀的骰子一次,事件1表示“骰子向上的点数为奇数”,事件2表示“骰子向上的点数为偶数”,事件3表示“骰子向上的点数大于3”,事件4表示“骰子向上的点数小于3”则()A.事件1与事件3互斥 B.事件1与事件2互为对立事件C.事件2与事件3互斥 D.事件3与事件4互为对立事件【答案】B【解析】【分析】根据互斥事件、对立事件定义判断求解.【详解】由题可知,事件1可表示为:,事件2可表示为:,事件3可表示为:,事件4可表示为:,因为,所以事件1与事件3不互斥,A错误;因为为不可能事件,为必然事件,所以事件1与事件2互为对立事件,B正确;因,所以事件2与事件3不互斥,C错误;因为为不可能事件,不为必然事件,所以事件3与事件4不互为对立事件,D错误;故选:B.2.已知某运动员每次投篮命中的概率都为,现采用随机模拟的方式估计该运动员三次投篮恰有两次命中的概率:先由计算机产生0到9之间取整数值的随机数,指定表示命中,表示不命中;再以三个随机数为一组,代表三次投篮结果,经随机模拟产生了如下12组随机数:,据此估计,该运动员三次投篮恰有两次命中的概率为()A. B. C. D.【答案】A【解析】【分析】根据条件,利用古典概率公式,即可求出结果.【详解】依题意在12组随机数中三次投篮恰有两次命中的有:,,共个,所以该运动员三次投篮恰有两次命中的概率.故选:A.3.从装有若干个红球和白球(除颜色外其余均相同)的黑色布袋中,随机不放回地摸球两次,每次摸出一个球.若事件“两个球都是红球”的概率为,“两个球都是白球”的概率为,则“两个球颜色不同”的概率为()A. B. C. D.【答案】C【解析】【分析】设“两个球都是红球”为事件A,“两个球都是白球”为事件B,“两个球颜色不同”为事件C,则A,B,C两两互斥,,再根据对立事件及互斥事件概率公式,即可求解.【详解】设“两个球都是红球”为事件A,“两个球都是白球”为事件B,“两个球颜色不同”为事件C,则,,且.因为A,B,C两两互斥,所以.故选:C.4.在空间直角坐标系中,点关于原点对称的点的坐标为()A. B. C. D.【答案】D【解析】【分析】由空间直角坐标系对称点的特征即可求得结果.【详解】根据空间直角坐标系中点坐标的特征可知,关于原点对称的点的坐标需要把横坐标、纵坐标、竖坐标都变为原来的相反数,所以点关于原点对称的点的坐标为.故选:D5.甲、乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.7,被甲或乙解出的概率为0.94,则该题被乙独立解出的概率为()A.0.9 B.0.8 C.0.7 D.0.6【答案】B【解析】【分析】由题意,表示出该题未被解出的概率,然后列出方程,即可得到结果.【详解】设乙独立解出该题的概率为,由题意可得,∴.故选:B.6.已知空间向量,,若与垂直,则等于()A. B. C. D.【答案】B【解析】【分析】根据空间向量线性运算的坐标运算及向量垂直的坐标表示列方程,解方程可得向量与.【详解】因为,,所以,因为与垂直,所以,解得,所以,所以,故选:B.7.某同学进行投篮训练,在甲、乙、丙三个不同的位置投中的概率分别p,,,该同学站在这三个不同的位置各投篮一次,恰好投中两次的概率为,则p的值为()A. B. C. D.【答案】A【解析】【分析】根据题意结合独立事件概率的乘法公式求恰好投中两次的概率,列方程求解即可得结果.【详解】在甲、乙、丙处投中分别记为事件A,B,C,则,可知恰好投中两次为事件,故恰好投中两次的概率,解得.故选:A.8.甲、乙、丙三位同学进行乒乓球比赛,约定赛制如下:(1)累计负两场者被淘汰;(2)比赛前抽签决定首先比赛的两人,另一人轮空;(3)每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;(4)当一人被淘汰后,剩余两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签甲、乙首先比赛,丙首轮轮空,设每场比赛双方获胜概率都为,则丙最终获胜的概率为()A. B. C. D.【答案】B【解析】【分析】根据赛制,最小比赛4场,最多比赛5场,比赛结束,将丙最终获胜的可能情况进行分类,分别求出各类事件发生的概率,再由互斥事件概率公式计算可得.【详解】根据赛制,最小比赛4场,最多比赛5场,比赛结束,注意丙轮空时,甲乙比赛结果对下面丙获胜概率没有影响(或者用表示),若比赛4场,丙最终获胜,则丙3场全胜,概率为,若比赛5场,丙最终获胜,则从第二场开始的4场比赛按照丙的胜负轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为,所以丙获胜的概率为.故选:B.二、多选题9.不透明的袋子中有5个大小质地完全相同的球,其中3个红球、2个黄球.记为事件“从中任取1个球是红球”,为事件“在有放回随机抽样中,第二次取出1个球是红球”,则()A. B.C.事件与是互斥事件 D.事件与是相互独立事件【答案】AD【解析】【分析】根据题意可知:此实验相当于进行两次独立重复实验,进而判断选项即可求解.【详解】根据题意可知:两次取球相当于两次独立重复实验,所以事件与是相互独立事件,且,故选:.10.已知事件A,B,且,则()A.如果,那么B.如果,那么C.如果A与B相互独立,那么D.如果A与B相互独立,那么【答案】ABD【解析】【分析】根据事件关系及运算有、,由事件的相互独立知,结合事件的运算求、.【详解】A:由,则,正确;B:由,则,正确;C:如果A与B相互独立,则,,错误;D:由C分析及事件关系知:,正确.故选:ABD.11.一台仪器每启动一次都随机地出现一个5位的数字,其中的各位数字中,,则()A.的所有实验结果构成的样本空间中共有32个样本点B.若的各位数字都是等可能地取值为0或1,则的概率大于的概率C.若的各位数字都是等可能地取值为0或1,则中各位数字之和是4的概率为D.若出现0的概率为,出现1的概率为,则启动一次出现的数字中恰有两个0的概率为【答案】ACD【解析】【分析】由样本空间的定义判断A,根据古典概型概率计算公式,互斥事件的加法及独立事件的乘法公式判断BCD.【详解】对于A,由于的各位数字中,都可能为0或1,则的所有实验结果构成的样本空间中有个样本点,正确;对于B,若的各位数字都是等可能地取值0或1,则,所以的概率等于的概率,错误;对于C,若的各位数字都是等可能地取值为0或1,如果中各位数字之和是4,即5个数字中有4和“1”和1个“0”,可能情况有:,共有5种等可能情况,其概率,正确;对于D,由于,数字中恰有2个0,即在四个数中恰好有2个0,2个1,可能情况有:,共有6种情况,启动一次出现的数字中恰有两个0的概率为,正确;故选:ACD.三、填空题12.已知四点共面且任意三点不共线,平面外一点,满足,则______.【答案】【解析】【分析】根据空间向量共面的推论求解即可.【详解】四点共面且任意三点不共线,,,.故答案为:13.随着阿根廷队的夺冠,2022年卡塔尔足球世界杯落下帷幕.根据足球比赛规则,两支球队先进行90分钟常规赛.若比分相同,则进行30分钟加时赛;如果在加时赛比分依旧相同,则进入5球点球大赛.若甲、乙两队在常规赛与加时赛中得分均相同,则甲、乙两队轮流进行5轮点球射门,进球得1分,不进球不得分.假设甲队每次进球的概率均为0.8,乙队每次进球的概率均为0.5,且在前两轮点球中,乙队领先一球,已知每轮点球大赛结果相互独立,则最终甲队获胜的概率为______.【答案】0.304【解析】【分析】先计算甲队获胜或平局的概率,再讨论甲队最终获胜的情况,依次计算其概率即可.【详解】甲队在每轮点球比赛获胜的概率为,甲队在每轮点球比赛平局的概率为.由题可知最终甲队获胜,则后三轮比赛只能有两种情况:①甲获胜两轮,剩下一轮甲乙平局,最终甲队获胜的概率为;②甲获胜三轮,该情况下最终甲队获胜的概率为,综上,甲队获胜的概率为0.24+0.064=0.304.故答案为:0.30414.冰雹猜想又称考拉兹猜想、角谷猜想、猜想等,其描述为:任一正整数,如果是奇数就乘以3再加1,如果是偶数就除以2,反复计算,最终都将会得到数字1.例如:给出正整数5,则进行这种反复运算的过程为,即按照这种运算规律进行5次运算后得到1.若从正整数6,7,8,9,10中任取2个数按照上述运算规律进行运算,则运算次数均为奇数的概率为______.【答案】##0.1【解析】【分析】根据题中定义,分别求出正整数6,7,8,9,10按照题中所给运算规律进行运算的次数,最后根据古典概型的概率计算公式进行求解即可.【详解】按照题中运算规律,正整数6的运算过程为,运算次数为;正整数7的部分运算过程为,当运算到10时,运算次数为10,由正整数的运算过程可知,正整数7总的运算次数为;正整数8的运算次数为;正整数9的部分运算过程为,当运算到7时,运算次数为3,由正整数7的运算过程可知,正整数9总的运算次数为;正整数10的运算次数为6;故正整数6,7,8,9,10的运算次数分别为偶数、偶数、奇数、奇数、偶数,从正整数6,7,8,9,10中任取2个数的方法总数为:,共种,其中的运算次数均为奇数的方法总数为:,共种,故运算次数均为奇数的概率为.故答案为:四、解答题15.经调查某市三个地区存在严重的环境污染,严重影响本地区人员的生活.相关部门立即要求务必加强环境治理,通过三个地区所有人员的努力,在一年后,环境污染问题得到了明显改善.为了解市民对城市环保的满意程度,开展了一次问卷调查,并对三个地区进行分层抽样,共抽取40名市民进行询问打分,将最终得分按分段,并得到如图所示的频率分布直方图.(1)求频率分布直方图中a的值,以及此次问卷调查分数的中位数;(2)若分数在区间的市民视为对环保不满意的市民,从不满意的市民中随机抽出两位市民做进一步调查,求抽出的两位市民来自不同打分区间的概率.【答案】(1),中位数为(分)(2)【解析】【分析】(1)根据小矩形的面积之和为即可求出,再根据频率分布直方图求出中位数即可;(2)分别求出和的市民人数,再根据古典概型即可得解.【小问1详解】由题意可得,解得,由,可得此次问卷调查分数的中位数在上,设为,则,解得,所以此次问卷调查分数的中位数为(分);【小问2详解】的市民有人,记为a,b,的市民有人,记为1,2,3,4,则从中抽取两人的基本事件有:共15种,其中两人来自不同的组的基本事件有8种,则所求概率为.16.甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)完游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,则乙抽出的牌的牌面数字比3大的概率是多少?(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜,你认为此游戏是否公平,说明你的理由.【答案】(1)答案见解析(2)(3)不公平,理由见解析【解析】【分析】(1)根据题意,利用列举法,即可求解基本事件的总数及基本事件的空间;(2)由乙抽到的牌只能是2,4,,进而求得乙抽到的牌的数字大于3的概率;(3)根据古典概率的概率计算公式,分别求得甲、乙获胜的概率,即可得到结论.【小问1详解】解:甲乙二人抽到的牌的所有情况(方片4用字母表示,红桃2,红桃3,红桃4分别用2,3,4表示),可得基本事件的空间为:(2,3)、(2,4)、(2,)、(3,2)、(3,4)、(3,)、(4,2)、(4,3)、(4,)、(,2)、(,3)、(,4),共12种不同情况,小问2详解】解:由题意,甲抽到3,乙抽到的牌只能是2,4,,所以乙抽到的牌的数字大于3的概率为.小问3详解】解:根据题意,甲抽到的牌比乙大的有(3,2)、(4,2)、(4,3)、(,2)、(,3),共有5种情况,所以甲胜的概率,乙获胜的概率为,因为,所以此游戏不公平.17.杭州2022年第19届亚运会(The19thAsianGamesHangzhou2022)将于2023年9月23日至10月8日举办.本届亚运会共设40个竞赛大项,包括31个奥运项目和9个非奥运项目.同时,在保持40个大项目不变的前提下,增设了电子竞技项目.与传统的淘汰赛不同,近年来一个新型的赛制“双败赛制”赢得了许多赛事的青睐.传统的淘汰赛失败一场就丧失了冠军争夺的权利,而在双败赛制下,每人或者每个队伍只有失败了两场才会淘汰出局,因此更有容错率.假设最终进入到半决赛有四支队伍,淘汰赛制下会将他们四支队伍两两分组进行比赛,胜者进入到总决赛,总决赛的胜者即为最终的冠军.双败赛制下,两两分组,胜者进入到胜者组,败者进入到败者组,胜者组两个队伍对决的胜者将进入到总决赛,败者进入到败者组.之前进入到败者组的两个队伍对决的败者将直接淘汰,胜者将跟胜者组的败者对决,其中的胜者进入总决赛,最后总决赛的胜者即为冠军.双败赛制下会发现一个有意思的事情,在胜者组中的胜者只要输一场比赛即总决赛就无法拿到冠军,但是其它的队伍却有一次失败的机会,近年来从败者组杀上来拿到冠军的不在少数,因此很多人戏谑这个赛制对强者不公平,是否真的如此呢?这里我们简单研究一下两个赛制.假设四支队伍分别为,其中对阵其他三个队伍获胜概率均为,另外三支队伍彼此之间对阵时获胜概率均为.最初分组时同组,同组.(1)若,在淘汰赛赛制下,获得冠军的概率分别为多少?(2)分别计算两种赛制下获得冠军的概率(用表示),并据此简单分析一下双败赛制下对队伍的影响,是否如很多人质疑的“对强者不公平”?【答案】(1);;(2)淘汰赛制获得冠军概率为,双败赛制获得冠军概率为;双败赛制下,会使得强者拿到冠军概率变大,弱者拿到冠军的概率变低,更加有利于筛选出“强者”,人们“对强者不公平”的质疑是不对的.【解析】【分析】(1)若拿冠军则只需要连赢两场,对于想拿到冠军,首先得战胜,然后战胜中的胜者,然后根据独立事件的乘法公式计算即可;(2)根据独立事件的乘法公式分别算出在不同赛制下拿冠军的概率,然后作差进行比较.【小问1详解】记拿到冠军分别为事件淘汰赛赛制下,只需要连赢两场即可拿到冠军,因此,对于想拿到冠军,首先得战胜,然后战胜中的胜者,因此.【小问2详解】记两种寒制下获得冠军的概率分别为,则.而双败赛制下,获得冠军有三种可能性:(1)直接连赢三局;(2)从胜者组掉入败者组然后杀回总决赛;(3)直接掉入败者组拿到冠军.因此,,.则不论哪种赛制下,获得冠军的概率均小于,.若,双败赛制下,队伍获得冠军的概率更大,其他队伍获得冠军的概率会变小,若,双败赛制下,以伍获得冠军的概率更小,其他队伍获得冠军的概率会变大,综上可知:双败赛制下,会使得强者拿到冠军概率变大,弱者拿到冠军的概率变低,更加有利于筛选出“强者”,人们“对强者不公平”的质疑是不对的.18.如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(1)求证:平面EDB;(2)求证:平面EFD;(3)求平面CPB与平面PBD的夹角的大小.【答案】(1)证明见解析(2)证明见解析(3)【解析】【分析】(1)以D为原点,DA,DC,DP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,求得平面EDB的一个法向量为,由证明;(2)由,结合,利用线面垂直的判定定理证明;(3)求得平面CPB的一个法向量为,易知平面PBD的一个法向量为,由求解.【小问1详解】解:以D为原点,DA,DC,DP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,设.依题意得,,,.所以,,.设平面EDB的一个法向量为,则有即取,则,因为平面EDB,因此平面EDB.【小问2详解】依题意得,因为,所以.由已知,且,所以平面EFD.小问3详解】依题意得,且,.设平面CPB的一个法向量为,则即,取.易知平面PBD的一个法向量为,所以.所以平面CPB与平面PBD的夹角为.19.在信道内传输

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论