上海市松江区市级名校2025届数学高一上期末达标检测试题含解析_第1页
上海市松江区市级名校2025届数学高一上期末达标检测试题含解析_第2页
上海市松江区市级名校2025届数学高一上期末达标检测试题含解析_第3页
上海市松江区市级名校2025届数学高一上期末达标检测试题含解析_第4页
上海市松江区市级名校2025届数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市松江区市级名校2025届数学高一上期末达标检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则的值为A. B.C. D.2.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°3.若是定义在(-∞,+∞)上的偶函数,∈[0,+∞)且(),则()A. B.C. D.4.某组合体的三视图如下,则它的体积是A. B.C. D.5.若且,则下列不等式中一定成立的是A. B.C. D.6.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是A.若,,,则B.若,,,则C.若,,,则D.若,,,则8.已知角的终边经过点P,则()A. B.C. D.9.已知函数,若方程有8个相异实根,则实数的取值范围A. B.C. D.10.已知命题,则p的否定为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.__________.12.已知函数,其所有的零点依次记为,则_________.13.一个扇形的中心角为3弧度,其周长为10,则该扇形的面积为__________14.如图,已知四棱锥P-ABCD,底面ABCD为正方形,PA⊥平面ABCD.给出下列命题:①PB⊥AC;②平面PAB与平面PCD的交线与AB平行;③平面PBD⊥平面PAC;④△PCD为锐角三角形.其中正确命题的序号是________15.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)16.已知函数,分别是定义在R上的偶函数和奇函数,且满足,则函数的解析式为____________________;若函数有唯一零点,则实数的值为____________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象的对称中心到对称轴的最小距离为.(1)求函数的解析式,并写出的单调区间;(2)求函数在区间上的最小值和最大值以及相对应的x值.18.已知函数.(1)判断函数的奇偶性,并进行证明;(2)若实数满足,求实数的取值范围.19.已知(),求:(1);(2).20.设函数.(1)当时,求函数最小值;(2)若函数的零点都在区间内,求的取值范围.21.已知函数(为常数),在时取得最大值2.(1)求的解析式;(2)求函数在上单调区间和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由,故选C2、A【解析】求出直线的斜率,由斜率得倾斜角【详解】由题意直线斜率为,所以倾斜角为故选:A3、B【解析】,有当时函数为减函数是定义在上的偶函数即故选4、A【解析】,故选A考点:1、三视图;2、体积【方法点晴】本题主要考查三视图和锥体的体积,计算量较大,属于中等题型.应注意把握三个视图的尺寸关系:主视图与俯视图长应对正(简称长对正),主视图与左视图高度保持平齐(简称高平齐),左视图与俯视图宽度应相等(简称宽相等),若不按顺序放置和不全时,则应注意三个视图名称.此外本题应注意掌握锥体和柱体的体积公式5、D【解析】利用不等式的性质逐个检验即可得到答案.【详解】A,a>b且c∈R,当c小于等于0时不等式不成立,故错误;Ba,b,c∈R,且a>b,可得a﹣b>0,当c=0时不等式不成立,故错误;,C,举反例,a=2,b=-1满足a>b,但不满足,故错误;D,将不等式化简即可得到a>b,成立,故选D.【点睛】本题主要考查不等式的性质以及排除法的应用,属于简单题.用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法.若结果为定值,则可采用此法.特殊法是“小题小做”的重要策略.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等6、A【解析】由菱形和平行四边形的定义可判断.【详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.7、D【解析】,,故选D.考点:点线面的位置关系.8、B【解析】根据三角函数的定义计算,即可求得答案.【详解】角终边过点,,,故选:B.9、D【解析】画出函数的图象如下图所示.由题意知,当时,;当时,设,则原方程化为,∵方程有8个相异实根,∴关于的方程在上有两个不等实根令,则,解得∴实数的取值范围为.选D点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.本题中在结合函数图象分析得基础上还用到了方程根的分布的有关知识10、D【解析】全称命题的否定为存在命题,利用相关定义进行判断即可【详解】全称命题的否定为存在命题,命题,则为.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】应用诱导公式化简求值即可.【详解】原式.故答案为:1.12、16【解析】由零点定义,可得关于的方程.去绝对值分类讨论化简.将对数式化为指数式,再去绝对值可得四个方程.结合韦达定理,求得各自方程两根的乘积,即可得所有根的积.【详解】函数的零点即所以去绝对值可得或即或去绝对值可得或,或当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得当,两边同时乘以,化简可得,设方程的根为.由韦达定理可得综上可得所有零点的乘积为故答案为:【点睛】本题考查了函数零点定义,含绝对值方程的解法,分类讨论思想的应用,由韦达定理研究方程根的关系,属于难题.13、6【解析】利用弧长公式以及扇形周长公式即可解出弧长和半径,再利用扇形面积公式即可求解.【详解】设扇形的半径为,弧长为,则,解得,所以,答案为6.【点睛】主要考查弧长公式、扇形的周长公式以及面积公式,属于基础题.14、②③【解析】设AC∩BD=O,由题意证明AC⊥PO,由已知可得AC⊥PA,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾说明①错误;由线面平行的判定和性质说明②正确;由线面垂直的判定和性质说明③正确;由勾股定理即可判断,说明④错误【详解】设AC∩BD=O,如图,①若PB⊥AC,∵AC⊥BD,则AC⊥平面PBD,∴AC⊥PO,又PA⊥平面ABCD,则AC⊥PA,在平面PAC内过P有两条直线与AC垂直,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾,①错误;②∵CD∥AB,则CD∥平面PAB,∴平面PAB与平面PCD的交线与AB平行,②正确;③∵PA⊥平面ABCD,∴平面PAC⊥平面ABCD,又BD⊥AC,∴BD⊥平面PAC,则平面PBD⊥平面PAC,③正确;④∵PD2=PA2+AD2,PC2=PA2+AC2,AC2=AD2+CD2,AD=CD,∴PD2+CD2=PC2,∴④△PCD为直角三角形,④错误,故答案为:②③15、【解析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.16、(1).(2).或【解析】把方程中的换成,然后利用奇偶性可得另一方程,联立可解得;令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值【详解】解:因为函数,分别是定义在上的偶函数和奇函数,所以,因为,①所以,即,②①②联立,可解得令,则,所以为偶函数,所以关于对称,因为有唯一的零点,所以的零点只能为,即,解得或故答案为:;或【点睛】关键点点睛:此题考查函数奇偶性的应用,考查函数的零点,解题的关键是令,可得为偶函数,从而可得关于对称,由函数有唯一零点,可得,从而可求得的值,考查数学转化思想和计算能力,属于中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),增区间为,,减区间为,;(2)最小值为,此时;最大值为,此时.【解析】(1)根据题意求得的最小正周期,即可求得与解析式,再求函数单调区间即可;(2)根据(1)中所求,可得在区间的单调性,结合单调性,即可求得函数的最值以及对应的值.【小问1详解】设的周期为T,则,所以,即,所以函数的解折式是.令,解得,故的增区间为,,令,解得,的减区间为,.【小问2详解】由(1)可知,的减区间为,,单调增区间为,,又因为,所以的单调递增区间为,单调递减区间为.又因为,所以,,故函数在区间上的最小值为,此时,最大值为.此时.18、(1)为奇函数,证明见解析(2)【解析】(1)由奇偶性定义直接判断即可;(2)化简函数得到,由此可知在上单调递增;利用奇偶性可化简所求不等式为,利用单调性解不等式即可.【小问1详解】为奇函数,证明如下:定义域,,为定义在上的奇函数.【小问2详解】,又在上单调递增,在上单调递增;由(1)知:,,,,即,,解得:,即实数的取值范围为.19、(1);(2).【解析】(1)用诱导公式化简已知式为,已知式平方后可求得;(2)已知式平方后减去,再考虑到就可求得.【详解】(1)由可得,所以,所以;(2),又因为,所以,,所以.【点睛】关键点点睛:本题解题的关键是熟记诱导公式,以及,,之间的联系即,.20、(1);(2)【解析】(1)分类讨论得;(2)由题意,得到等价不等式,解得的取值范围是试题解析:(1)∵函数.当,即时,;当,即时,;当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论