安徽省太和县民族中学2025届数学高二上期末监测模拟试题含解析_第1页
安徽省太和县民族中学2025届数学高二上期末监测模拟试题含解析_第2页
安徽省太和县民族中学2025届数学高二上期末监测模拟试题含解析_第3页
安徽省太和县民族中学2025届数学高二上期末监测模拟试题含解析_第4页
安徽省太和县民族中学2025届数学高二上期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省太和县民族中学2025届数学高二上期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.2.记为等差数列的前项和.若,,则的公差为()A.1 B.2C.4 D.83.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.4.某城市2017年的空气质量状况如下表所示:污染指数3060100110130140概率其中污染指数时,空气质量为优;时,空气质量为良;时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为()A. B.C. D.5.直线的一个法向量为()A. B.C. D.6.曲线y=lnx在点M处的切线过原点,则该切线的斜率为()A.1 B.eC.-1 D.7.过抛物线的焦点作互相垂直的弦,则的最小值为()A.16 B.18C.32 D.648.记等差数列的前n项和为,若,,则等于()A.5 B.31C.38 D.419.设等差数列,前n项和分别是,若,则()A.1 B.C. D.10.在等差数列中,若,则()A.6 B.9C.11 D.2411.在数列中,若,则称为“等方差数列”,下列对“等方差数列”的判断,其中不正确的为()A.若是等方差数列,则是等差数列 B.若是等方差数列,则是等方差数列C.是等方差数列 D.若是等方差数列,则是等方差数列12.点到直线的距离是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的右焦点为F,以F为圆心,以a为半径的圆与双曲线C的一条渐近线交于A,B两点.若(O为坐标原点),则双曲线C的离心率为___________.14.已知数列满足,则的前20项和___________.15.随机抽取某社区名居民,调查他们某一天吃早餐所花的费用(单位:元),所获数据的茎叶图如图所示,则这个数据的众数是_________16.已知直线和互相平行,则实数的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.若函数有两个极值点,求实数的取值范围.18.(12分)已知直线与双曲线相交于、两点.(1)当时,求;(2)是否存在实数,使以为直径的圆经过坐标原点?若存在,求出的值;若不存在,说明理由.19.(12分)已知椭圆的焦点为,且长轴长是焦距的倍(1)求椭圆的标准方程;(2)若斜率为1的直线与椭圆相交于两点,已知点,求面积的最大值20.(12分)已知,是函数的两个极值点.(1)求的解析式;(2)记,,若函数有三个零点,求的取值范围.21.(12分)如图,直四棱柱中,底面是边长为的正方形,点在棱上.(1)求证:;(2)从条件①、条件②、条件③这三个条件中选择两个作已知,使得平面,并给出证明.条件①:为的中点;条件②:平面;条件③:.(3)在(2)的条件下,求平面与平面夹角的余弦值.22.(10分)某双曲线型自然冷却通风塔的外形是由图1中的双曲线的一部分绕其虚轴所在的直线旋转一周所形成的曲面,如图2所示.双曲线的左、右顶点分别为、.已知该冷却通风塔的最窄处是圆O,其半径为1;上口为圆,其半径为;下口为圆,其半径为;高(即圆与所在平面间的距离)为.(1)求此双曲线的方程;(2)以原平面直角坐标系的基础上,保持原点和x轴、y轴不变,建立空间直角坐标系,如图3所示.在上口圆上任取一点,在下口圆上任取一点.请给出、的值,并求出与的值;(3)在(2)的条件下,是否存在点P、Q,使得P、A、Q三点共线.若不存在,请说明理由;若存在,求出点P、Q的坐标,并证明此时线段PQ上任意一点都在曲面上.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.2、C【解析】根据等差数列的通项公式及前项和公式利用条件,列出关于与的方程组,通过解方程组求数列的公差.【详解】设等差数列的公差为,则,,联立,解得.故选:C.3、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.4、A【解析】根据互斥事件的和的概率公式求解即可.【详解】由表知空气质量为优的概率是,由互斥事件的和的概率公式知,空气质量为良的概率为,所以该城市2017年空气质量达到良或优的概率,故选:A【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.5、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.6、D【解析】设出点坐标,结合导数列方程,由此求得切点坐标并求得切线的斜率.【详解】设切点为,,故在点的切线的斜率为,所以,所以切点为,切线的斜率为.故选:D7、B【解析】根据抛物线方程求出焦点坐标,分别设出,所在直线方程,与抛物线方程联立,利用根与系数的关系及弦长公式求得,,然后利用基本不等式求最值.【详解】抛物线的焦点,设直线的直线方程为,则直线的方程为.,,,.由,得,,同理可得..当且仅当,即时取等号.所以的最小值为.故选:B8、A【解析】设等差数列的公差为d,首先根据题意得到,再解方程组即可得到答案.【详解】解:设等差数列的公差为d,由题知:,解得.故选:A.9、B【解析】根据等差数列的性质和求和公式变形求解即可【详解】因为等差数列,的前n项和分别是,所以,故选:B10、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B11、B【解析】根据等方差数列的定义逐一进行判断即可【详解】选项A中,符合等差数列的定义,所以是等差数列,A正确;选项B中,不是常数,所以不是等方差数列,选项B错误;选项C中,,所以是等方差数列,C正确;选项D中,所以是等方差数列,D正确故选:B12、B【解析】直接使用点到直线距离公式代入即可.【详解】由点到直线距离公式得故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】过F作,利用点到直线距离可求出,再根据勾股定理可得,,由可得,即可建立关系求解.【详解】如图,过F作,则E是AB中点,设渐近线为,则,则在直角三角形OEF中,,在直角三角形BEF中,,,则,即,即,则,即,.故答案为:.【点睛】本题考查双曲线离心率的求解,解题的关键是分别表示出,,由建立关系.14、135【解析】直接利用数列的递推关系式写出相邻四项之和,进而求出数列的和.【详解】数列满足,所以,故,当时,,当时,,,当时,,所以.故答案为:135.15、【解析】将个数据写出来,可得出这组数据的众数.【详解】这个数据分别为、、、、、、、、、、、、、、,该组数据的众数为.故答案为:.16、【解析】根据直线平行的充要条件即可求出实数的值.详解】由直线和互相平行,得,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、.【解析】求得,根据其在上有两个零点,结合零点存在性定理,对参数进行分类讨论,即可求得参数的取值范围.【详解】因为,所以,令,由题意可知在上有两个不同零点.又,若,则,故在上为增函数,这与在上有两个不同零点矛盾,故.当时,,为增函数,当时,,为减函数,故,因为在上有两个不同零点,故,即,即,取,,故在有一个零点,取,,令,,则,故在为减函数,因为,故,故,故在有一个零点,故在上有两个零点,故实数的取值范围为.【点睛】本题考察利用导数由函数的极值点个数求参数的范围,涉及零点存在定理,以及利用导数研究函数单调性,属综合困难题.18、(1);(2)不存在,理由见解析.【解析】(1)当时,将直线的方程与双曲线的方程联立,列出韦达定理,利用弦长公式可求得;(2)假设存在实数,使以为直径的圆经过坐标原点,设、,将直线与双曲线的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出,即可得出结论.【小问1详解】解:设点、,当时,联立,可得,,由韦达定理可得,,所以,.【小问2详解】解:假设存在实数,使以为直径的圆经过坐标原点,设、,联立得,由题意可得,解得且,由韦达定理可知,因为以为直径的圆经过坐标原点,则,所以,,整理可得,该方程无实解,故不存在.19、(1);(2)1.【解析】(1)根据给定条件求出椭圆半焦距c,长短半轴长a,b即可得解.(2)设出直线的方程,再与椭圆C的方程联立,求出弦AB长及点P到直线的距离,然后求出面积的表达式并求其最大值即得.【小问1详解】设椭圆的标准方程为,依题意,半焦距,,即,所以椭圆的标准方程为.【小问2详解】依题意,设直线,,由消去y并整理得:,由,解得,则有,,于是得,而点到直线的距离为,因此,的面积,当且仅当,即时取“=”,所以面积最大值为1.【点睛】结论点睛:直线l:y=kx+b上两点间的距离;直线l:x=my+t上两点间的距离.20、(1);(2)【解析】(1)根据极值点的定义,可知方程的两个解即为,,代入即得结果;(2)根据题意,将方程转化为,则函数与直线在区间,上有三个交点,进而求解的取值范围【详解】解:(1)因为,所以根据极值点定义,方程的两个根即为,,,代入,,可得,解之可得,,故有;(2)根据题意,,,,根据题意,可得方程在区间,内有三个实数根,即函数与直线在区间,内有三个交点,又因为,则令,解得;令,解得或,所以函数在,上单调递减,在上单调递增;又因为,,,,函数图象如下所示:若使函数与直线有三个交点,则需使,即21、(1)证明见解析;(2)答案见解析;(3).【解析】(1)连结,,由直四棱柱的性质及线面垂直的性质可得,再由正方形的性质及线面垂直的判定、性质即可证结论.(2)选条件①③,设,连结,,由中位线的性质、线面垂直的性质可得、,再由线面垂直的判定证明结论;选条件②③,设,连结,由线面平行的性质及平行推论可得,由线面垂直的性质有,再由线面垂直的判定证明结论;(3)构建空间直角坐标系,求平面、平面的法向量,应用空间向量夹角的坐标表示求平面与平面夹角的余弦值.【小问1详解】连结,,由直四棱柱知:平面,又平面,所以,又为正方形,即,又,∴平面,又平面,∴.【小问2详解】选条件①③,可使平面.证明如下:设,连结,,又,分别是,的中点,∴.又,所以.由(1)知:平面,平面,则.又,即平面.选条件②③,可使平面.证明如下:设,连结.因为平面,平面,平面平面,所以,又,则.由(1)知:平面,平面,则.又,即平面.【小问3详解】由(2)可知,四边形为正方形,所以.因为,,两两垂直,如图,以为原点,建立空间直角坐标系,则,,,,,,所以,.由(1)知:平面的一个法向量为.设平面的法向量为,则,令,则.设平面与平面的夹角为,则,所以平面与平面夹角的余弦值为.22、(1);(2),,,;(3)存在,或,证明见解析.【解析】(1)设双曲线的标准方程为,易知,设,,代入求解即可;(2)分析圆,圆的方程即可求解;(3)利用圆的参数方程,设,,利用,即可求解,再利用线段PQ上任意一点的特征证明点在曲面上;【小问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论