版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省玉溪市元江民中2025届高二数学第一学期期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则()A. B.C. D.2.已知,则下列不等式一定成立的是()A B.C. D.3.设,命题“若,则或”的否命题是()A.若,则或B.若,则或C.若,则且D.若,则且4.函数的定义域为开区间,导函数在内的图像如图所示,则函数在开区间内有极小值点()A.个 B.个C.个 D.个5.在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例.在西方,最早提出并证明此定理的为公元前世纪古希腊的毕达哥拉斯学派,他们用演绎法证明了直角三角形斜边平方等于两直角边平方之和.若一个直角三角形的斜边长等于则这个直角三角形周长的最大值为()A. B.C. D.6.已知数列满足,在任意相邻两项与(k=1,2,…)之间插入个2,使它们和原数列的项构成一个新的数列.记为数列的前n项和,则的值为()A.162 B.163C.164 D.1657.直线且的倾斜角为()A. B.C. D.8.设是等比数列,且,,则()A.12 B.24C.30 D.329.某地政府为落实疫情防控常态化,不定时从当地780名公务员中,采用系统抽样的方法抽取30人做核酸检测.把这批公务员按001到780进行编号,若054号被抽中,则下列编号也被抽中的是()A.076 B.104C.390 D.52210.设椭圆C:的右焦点为F,过原点O的动直线l与椭圆C交于A,B两点,那么的周长的取值范围为()A. B.C. D.11.给出下列判断,其中正确的是()A.三点唯一确定一个平面B.一条直线和一个点唯一确定一个平面C.两条平行直线与同一条直线相交,三条直线在同一平面内D.空间两两相交的三条直线在同一平面内12.方程化简的结果是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数f(x)=x3-3x2+2,则函数f(x)的极大值为______14.复数的共轭复数是__________15.已知数列满足:,,则______16.已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)二项式展开式中第五项的二项式系数是第三项系数的4倍.求:(1);(2)展开式中的所有的有理项.18.(12分)圆的圆心为,且与直线相切,求:(1)求圆的方程;(2)过的直线与圆交于,两点,如果,求直线的方程19.(12分)某工厂修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米(1)求底面积,并用含x的表达式表示池壁面积;(2)怎样设计水池能使总造价最低?最低造价是多少?20.(12分)如图,在棱长为2的正方体中,,分别为线段,的中点.(1)求点到平面的距离;(2)求平面与平面夹角的余弦值.21.(12分)在中,角,,所对的边分别为,,,其外接圆半径为,已知(1)求角;(2)若边的长是该边上高的倍,求22.(10分)在①,;②,;③,.这三个条件中任选一个,补充在下面问题中.问题:已知数列的前n项和为,,___________.(1)求数列的通项公式(2)已知,求数列的前n项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据基本初等函数的导数公式及求导法则求导函数即可.【详解】.故选:B.2、B【解析】运用不等式的性质及举反例的方法可求解.【详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B3、C【解析】根据否命题的定义直接可得.【详解】根据否命题的定义可得命题“若,则或”的否命题是若,则且,故选:C.4、A【解析】利用极小值的定义判断可得出结论.【详解】由导函数在区间内的图象可知,函数在内的图象与轴有四个公共点,在从左到右第一个点处导数左正右负,在从左到右第二个点处导数左负右正,在从左到右第三个点处导数左正右正,在从左到右第四个点处导数左正右负,所以函数在开区间内的极小值点有个,故选:A.5、C【解析】设直角三角形的两条直角边边长分别为,则,根据基本不等式求出的最大值后,可得三角形周长的最大值.【详解】设直角三角形的两条直角边边长分别为,则.因为,所以,所以,当且仅当时,等号成立.故这个直角三角形周长的最大值为故选:C6、C【解析】确定数列的前70项含有的前6项和64个2,从而求出前70项和.【详解】,其中之间插入2个2,之间插入4个2,之间插入8个2,之间插入16个2,之间插入32个2,之间插入64个2,由于,,故数列的前70项含有的前6项和64个2,故故选:C7、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.8、D【解析】根据已知条件求得的值,再由可求得结果.【详解】设等比数列的公比为,则,,因此,.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题9、D【解析】根据题意,求得组数与抽中编号的对应关系,即可判断和选择.【详解】从780名公务员中,采用系统抽样的方法抽取30人做核酸检测,故需要分为组,每组人,设第组抽中的编号为,设,由题可知:,故可得,故可得.当时,.故选:.10、A【解析】根据椭圆的对称性椭圆的定义可得,结合的范围求的周长的取值范围.【详解】的周长,又因为A,B两点为过原点O的动直线l与椭圆C的交点,所以A,B两点关于原点对称,椭圆C的左焦点为,则,所以,又因为三点不共线,所以,所以的周长的取值范围为,故选:A.11、C【解析】根据确定平面的条件可对每一个选项进行判断.【详解】对A,如果三点在同一条直线上,则不能确定一个平面,故A错误;对B,如果这个点在这条直线上,就不能确定一个平面,故B错误;对C,两条平行直线确定一个平面,一条直线与这两条平行直线都相交,则这条直线就在这两条平行直线确定的一个平面内,故这三条直线在同一平面内,C正确;对D,空间两两相交的三条直线可确定一个平面,也可确定三个平面,故D错误.故选:C12、D【解析】由方程的几何意义得到是椭圆,进而得到焦点和长轴长求解.【详解】∵方程,表示平面内到定点、的距离的和是常数的点的轨迹,∴它的轨迹是以为焦点,长轴,焦距的椭圆;∴;∴椭圆的方程是,即为化简的结果故选:D二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】利用导数研究函数的单调区间,从而得到极大值.【详解】,令,解得:,00极大值极小值所以当时,函数取得极大值,即函数的极大值为.故答案为:14、【解析】利用复数除法化简,由共轭复数的概念写出即可.【详解】,∴.故答案为:15、【解析】令n=n-1代回原式,相减可得,利用累乘法,即可得答案.【详解】因为,所以,两式相减可得,整理得,所以,整理得,又,解得.故答案为:16、3【解析】由双曲线方程可得,利用双曲线定义,以及直角三角形的勾股定理可得,由此求得答案.【详解】由双曲线的左、右焦点分别为,双曲线左支上点满足,可得:,则,且,故,所以,故,故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)6;(2),,【解析】(1)先得到二项展开式的通项,再根据第五项的二项式系数是第三项系数的4倍,建立方程求解.(2)根据(1)的通项公式求解.【详解】(1)二项展开式的通项.依题意得,,所以,解得.(2)由(1)得,当,3,6时为有理项,故有理有,,.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题.18、(1)(2)或【解析】由点到直线的距离公式求得圆的半径,则圆的方程可求;当直线的斜率不存在时,求得弦长为,满足题意;当直线的斜率不存在时,设出直线方程,求出圆心到直线的距离,再由垂径定理列式求,则直线方程可求【小问1详解】由题意得:圆的半径为,则圆的方程为;【小问2详解】当直线的斜率不存在时,直线方程为,得,符合题意;当直线的斜率存在时,设直线方程为,即圆心到直线的距离,则,解得直线的方程为直线的方程为或19、(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.【解析】(1)根据题意,由于修建一个长方体无盖蓄水池,其容积为4800立方米,深度为3米可得底面积为1600,池壁面积s=.(2)同时池底每平方米的造价为150元,池壁每平方米的造价为120元设池底长方形长为x米,则可知总造价s=,x=40时,则.故可知当x=40时,则有可使得总造价最低,最低造价是268800元.考点:不等式求解最值点评:主要是考查了不等式求解最值的运用,属于基础题.20、(1);(2).【解析】(1)以为原点,为轴,为轴,为轴,建立空间直角坐标系.可根据题意写出各个点的坐标,进而求出平面的法向量和的坐标,点到平面的距离.计算即可求出答案.(2)由(1)知平面的法向量,在把平面的法向量表示出来,平面与平面夹角的余弦值为,计算即可求出答案.【小问1详解】以为原点,为轴,为轴,为轴,建立如下图所示的空间直角坐标系.由于正方体的棱长为2和,分别为线段,的中点知,.设平面的法向量为..则..故点到平面的距离.【小问2详解】平面的法向量,平面与平面夹角的余弦值.21、(1);(2)【解析】(1)利用正弦定理将角化边,再利用余弦定理计算可得;(2)记边上的高为,不妨设,即可求出,再利用余弦定理求出,在中,记,根据锐角三角函数求出,,最后根据,利用两角和的余弦公式计算可得;【详解】解:(1)由已知条件,所以,所以所以,,由余弦定理可得,而,于是(2)记边上的高为,不妨设,则,,,所以,由余弦定理得,在中,记,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 各种手术的备皮范围
- 医疗服务协议及第二季度医保督导问题反馈培训会培训记录
- 《光照与园林植物》课件
- 医疗设备推广方案
- 《呼吸纵膈泌尿》课件
- 数学学案:课堂导学基本逻辑联结词
- 临床药物治疗学药物
- 《实验设计初步》课件
- 《办公室健康指南》课件
- 西药学综合知识与技能题库及答案(2201-2400题)
- YY 0569-2005生物安全柜
- juniper防火墙培训(SRX系列)
- GB/T 13610-2020天然气的组成分析气相色谱法
- 心肌梗死后综合征
- 《彩虹》教案 省赛一等奖
- FLUENT6.3使用说明及例题
- 街道火灾事故检讨
- 最新班组安全管理安全生产标准化培训课件
- 《一粒种子成长过程》的课件
- 学好语文贵在三个“多”:多读、多背、多写-浅谈语文学法指导
- 助人为乐-主题班会(课件)
评论
0/150
提交评论