版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知识要点
基础练习
例题分析
巩固练习指数、对数函数1.指数函数
一般地,函数y=ax(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R2.指数函数的图象和性质(见下表)在R上是减函数(4)在R上是增函数(3)过点(0,1),即x=0时,y=1(2)值域(0,+∞)(1)定义域:Ra>10<a<1性质图象3.对数函数的图象和性质对数函数y=logax的图象和性质分a>1及0<a<1两种情况.注意作图时先作y=ax的图象,再作y=ax的图象关于直线y=x的对称曲线,就可以得到y=logax的图象,其图象和性质见下表
a>10<a<1图象性质(1)定义域:(0,+∞)(2)值域:R(3)过点(1,0),即x=1时,y=0(4)在(0,+∞)上是增函数在(0,+∞)上是减函数4换底公式②由公式和运算性质推得的结论
的作用.注意换底公式在对数运算中的作用:①公式
的顺用和逆用;7.如图中曲线C1,C2,C3,C4分别是函数y=ax,y=bx,y=cx,y=dx的图象,则a,b,c,d与1的大小关系是()(A)a<b<1<c<d(B)a<b<1<d<c(C)b<a<1<c<d(D)b<a<1<d<cD8.方程loga(x+1)+x2=2(0<a<1)的解的个数是()(A)0(B)1(C)2(D)无法确定C【例题分析】解:依题意得.解:依题意得.解:依题意得1.比较下列各组中两个值的大小,并说明理由.【巩固练习】【解题回顾】求解本题应注意以下三点:(1)将y转化为二次函数型;(2)确定a的取值范围;(3)明确logax的取值范围.4.已知函数y=loga(a2x)·loga(ax),当x∈(2,4)时,y的取值范围是[-1/8,0],求实数a的值.【解题回顾】本题是一个内涵丰富的综合题.涉及的知识很广:定义域、不等式、单调性、复合函数、方程实根的分布等.解题时应着力于知识的综合应用和对隐含条件的发掘上.5.设
的定义域为[s,t),值域为(loga(at-a),loga(as-a)].(1)求证s>3;(2)求a的取值范围2.要充分利用指数函数和对数函数的概念、图象、性质讨论一些复合函数的性质,并进行总结回顾.如求y=log2(x2-2x)的单调增区间可转化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年园林景观照明系统设计与安装合同3篇
- 2024年版新员工劳动协议模板指导样例版B版
- 音乐教学工作计划
- 2021后勤工作总结范文
- 全年工作计划集合六篇
- 2021员工辞职报告集锦15篇
- 公司的活动总结感悟10篇
- 公司技术员个人工作总结例文8篇
- 教导工作计划四篇
- 远程培训总结(15篇)
- 鼻窦炎-疾病研究白皮书
- 污泥( 废水)运输服务方案(技术方案)
- 2019北师大版高中英语选修一UNIT 3 单词短语句子复习默写单
- 大班春季班级工作计划范文
- 《新媒体导论》(第二版)-课件 第5、6章 新媒体的社交化:社会化媒体的发展及其应用、新媒体的移动化:新时空下的新传播
- 桥梁检修通道施工方案
- 英文写作课件:段落的写作
- 鲁科版(五四制)八年级上册《第三章 光现象》章节练习(含解析)
- 产业园运营合作协议
- 16J607-建筑节能门窗
- 理解词语句子的方法PPT
评论
0/150
提交评论