2019-2023历年高考真题分类专题05 立体几何(选填题)(解析版)_第1页
2019-2023历年高考真题分类专题05 立体几何(选填题)(解析版)_第2页
2019-2023历年高考真题分类专题05 立体几何(选填题)(解析版)_第3页
2019-2023历年高考真题分类专题05 立体几何(选填题)(解析版)_第4页
2019-2023历年高考真题分类专题05 立体几何(选填题)(解析版)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

五年(2019-2023)年高考真题分项汇编专题05立体几何(理科)(选填题)立体几何在文科数高考中属于重点知识点,难度中等。包含题型主要是1空间几何体基本性质及表面积体积2空间几何题三视图3空间几何体内切球外接球的应用4空间几何体情景化应用考点01空间几何体基本性质及表面积体积一、单选题1.(2023·全国·统考乙卷)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,,若的面积等于,则该圆锥的体积为(

)A. B. C. D.【答案】B【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在中,,而,取中点,连接,有,如图,,,由的面积为,得,解得,于是,所以圆锥的体积.故选:B2.(2023·全国·统考甲卷)已知四棱锥的底面是边长为4的正方形,,则的面积为(

)A. B. C. D.【答案】C【分析】法一:利用全等三角形的证明方法依次证得,,从而得到,再在中利用余弦定理求得,从而求得,由此在中利用余弦定理与三角形面积公式即可得解;法二:先在中利用余弦定理求得,,从而求得,再利用空间向量的数量积运算与余弦定理得到关于的方程组,从而求得,由此在中利用余弦定理与三角形面积公式即可得解.【详解】法一:连结交于,连结,则为的中点,如图,因为底面为正方形,,所以,则,又,,所以,则,又,,所以,则,在中,,则由余弦定理可得,故,则,故在中,,所以,又,所以,所以的面积为.法二:连结交于,连结,则为的中点,如图,因为底面为正方形,,所以,在中,,则由余弦定理可得,故,所以,则,不妨记,因为,所以,即,则,整理得①,又在中,,即,则②,两式相加得,故,故在中,,所以,又,所以,所以的面积为.故选:C.3.(2023·天津·统考高考真题)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为(

)A. B. C. D.【答案】B【分析】分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.先证平面,则可得到,再证.由三角形相似得到,,再由即可求出体积比.【详解】如图,分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.

因为平面,平面,所以平面平面.又因为平面平面,,平面,所以平面,且.在中,因为,所以,所以,在中,因为,所以,所以.故选:B4.(2022·全国·统考高考乙卷)在正方体中,E,F分别为的中点,则(

)A.平面平面 B.平面平面C.平面平面 D.平面平面【答案】A【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体中,且平面,又平面,所以,因为分别为的中点,所以,所以,又,所以平面,又平面,所以平面平面,故A正确;选项BCD解法一:如图,以点为原点,建立空间直角坐标系,设,则,,则,,设平面的法向量为,则有,可取,同理可得平面的法向量为,平面的法向量为,平面的法向量为,则,所以平面与平面不垂直,故B错误;因为与不平行,所以平面与平面不平行,故C错误;因为与不平行,所以平面与平面不平行,故D错误,故选:A.选项BCD解法二:解:对于选项B,如图所示,设,,则为平面与平面的交线,在内,作于点,在内,作,交于点,连结,则或其补角为平面与平面所成二面角的平面角,由勾股定理可知:,,底面正方形中,为中点,则,由勾股定理可得,从而有:,据此可得,即,据此可得平面平面不成立,选项B错误;对于选项C,取的中点,则,由于与平面相交,故平面平面不成立,选项C错误;对于选项D,取的中点,很明显四边形为平行四边形,则,由于与平面相交,故平面平面不成立,选项D错误;故选:A.5.(2022·全国·统考高考甲卷)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则(

)A. B. C. D.【答案】C【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.故选:C.6.(2022·北京·统考高考真题)已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合.设集合,则T表示的区域的面积为(

)A. B. C. D.【答案】B【分析】求出以为球心,5为半径的球与底面的截面圆的半径后可求区域的面积.【详解】设顶点在底面上的投影为,连接,则为三角形的中心,且,故.因为,故,故的轨迹为以为圆心,1为半径的圆,而三角形内切圆的圆心为,半径为,故的轨迹圆在三角形内部,故其面积为故选:B7.(2021·全国·统考高考Ⅰ卷)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为(

)A. B. C. D.【答案】B【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.【详解】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.8.(2019·全国·统考高考Ⅲ卷)如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线【答案】B【解析】利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.二、填空题9.(2023·全国新高考·Ⅱ卷)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为.【答案】【分析】方法一:割补法,根据正四棱锥的几何性质以及棱锥体积公式求得正确答案;方法二:根据台体的体积公式直接运算求解.【详解】方法一:由于,而截去的正四棱锥的高为,所以原正四棱锥的高为,所以正四棱锥的体积为,截去的正四棱锥的体积为,所以棱台的体积为.方法二:棱台的体积为.故答案为:.10.(2020·全国·新高考Ⅱ卷)已知正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点,则三棱锥A-NMD1的体积为【答案】【分析】利用计算即可.【详解】因为正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点所以故答案为:【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些.11.(2020·全国·统考高考Ⅱ卷)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是.①②③④【答案】①③④【分析】利用两交线直线确定一个平面可判断命题的真假;利用三点共线可判断命题的真假;利用异面直线可判断命题的真假,利用线面垂直的定义可判断命题的真假.再利用复合命题的真假可得出结论.【详解】对于命题,可设与相交,这两条直线确定的平面为;若与相交,则交点在平面内,同理,与的交点也在平面内,所以,,即,命题为真命题;对于命题,若三点共线,则过这三个点的平面有无数个,命题为假命题;对于命题,空间中两条直线相交、平行或异面,命题为假命题;对于命题,若直线平面,则垂直于平面内所有直线,直线平面,直线直线,命题为真命题.综上可知,,为真命题,,为假命题,为真命题,为假命题,为真命题,为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.考点02空间几何体三视图一、单选题1.(2023·全国·统考高考乙卷)如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为(

A.24 B.26 C.28 D.30【答案】D【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【详解】如图所示,在长方体中,,,点为所在棱上靠近点的三等分点,为所在棱的中点,则三视图所对应的几何体为长方体去掉长方体之后所得的几何体,

该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形,其表面积为:.故选:D.2.(2022·全国·统考高考甲卷)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为(

)A.8 B.12 C.16 D.20【答案】B【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积.故选:B.3.(2021·全国·统考高考甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A. B. C. D.【答案】D【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D4.(2021·北京·统考高考真题)某四面体的三视图如图所示,该四面体的表面积为(

)A. B. C. D.【答案】A【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.【详解】根据三视图可得如图所示的几何体-正三棱锥,其侧面为等腰直角三角形,底面等边三角形,由三视图可得该正三棱锥的侧棱长为1,故其表面积为,故选:A.5.(2021·浙江·统考高考真题)某几何体的三视图如图所示,则该几何体的体积是(

)A. B.3 C. D.【答案】A【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱,其高为1,底面为等腰梯形,该等腰梯形的上底为,下底为,腰长为1,故梯形的高为,故,故选:A.6.(2020·全国·统考高考Ⅱ卷)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为,在俯视图中对应的点为,则该端点在侧视图中对应的点为(

)A. B. C. D.【答案】A【分析】根据三视图,画出多面体立体图形,即可求得点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,上的点在正视图中都对应点M,直线上的点在俯视图中对应的点为N,∴在正视图中对应,在俯视图中对应的点是,线段,上的所有点在侧试图中都对应,∴点在侧视图中对应的点为.故选:A7.(2020·全国·统考高考Ⅲ卷)下图为某几何体的三视图,则该几何体的表面积是(

)A.6+4 B.4+4 C.6+2 D.4+2【答案】C【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:根据勾股定理可得:是边长为的等边三角形根据三角形面积公式可得:该几何体的表面积是:.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.8.(2020·北京·统考高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为(

).A. B. C. D.【答案】D【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:.故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.二、填空题9.(2021·全国·统考高考乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).【答案】③④(答案不唯一)【分析】由题意结合所给的图形确定一组三视图的组合即可.【详解】选择侧视图为③,俯视图为④,如图所示,长方体中,,分别为棱的中点,则正视图①,侧视图③,俯视图④对应的几何体为三棱锥.故答案为:③④.【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.10.(2019·北京·高考真题)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为.【答案】40.【分析】本题首先根据三视图,还原得到几何体,根据题目给定的数据,计算几何体的体积.属于中等题.【详解】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱之后余下的几何体,几何体的体积.考点03空间几何体内接球外切球问题1.(2022·全国·统考高考乙卷)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为(

)A. B. C. D.【答案】C【分析】方法一:先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】[方法一]:【最优解】基本不等式设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为,则(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为又设四棱锥的高为,则,当且仅当即时等号成立.故选:C[方法二]:统一变量+基本不等式由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高,(当且仅当,即时,等号成立)所以该四棱锥的体积最大时,其高.故选:C.[方法三]:利用导数求最值由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为,底面所在圆的半径为,则,所以该四棱锥的高,,令,,设,则,,,单调递增,,,单调递减,所以当时,最大,此时.故选:C.【点评】方法一:思维严谨,利用基本不等式求最值,模型熟悉,是该题的最优解;方法二:消元,实现变量统一,再利用基本不等式求最值;方法三:消元,实现变量统一,利用导数求最值,是最值问题的常用解法,操作简便,是通性通法.2.(2022·全国·统考新高考Ⅰ卷)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是(

)A. B. C. D.【答案】C【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,[方法一]:导数法设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.[方法二]:基本不等式法由方法一故所以当且仅当取到,当时,得,则当时,球心在正四棱锥高线上,此时,,正四棱锥体积,故该正四棱锥体积的取值范围是3.(2022·全国·统考新高考Ⅱ卷)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为(

)A. B. C. D.【答案】A【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A.4.(2021·全国·统考高考甲卷)已知A,B,C是半径为1的球O的球面上的三个点,且,则三棱锥的体积为(

)A. B. C. D.【答案】A【分析】由题可得为等腰直角三角形,得出外接圆的半径,则可求得到平面的距离,进而求得体积.【详解】,为等腰直角三角形,,则外接圆的半径为,又球的半径为1,设到平面的距离为,则,所以.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.5.(2020·全国·统考高考Ⅰ卷)已知为球的球面上的三个点,⊙为的外接圆,若⊙的面积为,,则球的表面积为(

)A. B. C. D.【答案】A【分析】由已知可得等边的外接圆半径,进而求出其边长,得出的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆半径为,球的半径为,依题意,得,为等边三角形,由正弦定理可得,,根据球的截面性质平面,,球的表面积.故选:A

【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.6.(2019·全国·高考Ⅰ卷)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A. B. C. D.【答案】D【分析】先证得平面,再求得,从而得为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:为边长为2的等边三角形,为正三棱锥,,又,分别为、中点,,,又,平面,平面,,为正方体一部分,,即,故选D.解法二:设,分别为中点,,且,为边长为2的等边三角形,又中余弦定理,作于,,为中点,,,,,又,两两垂直,,,,故选D.【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.二、填空题7.(2023·全国·统考高考甲卷)在正方体中,E,F分别为AB,的中点,以EF为直径的球的球面与该正方体的棱共有个公共点.【答案】12【分析】根据正方体的对称性,可知球心到各棱距离相等,故可得解.【详解】不妨设正方体棱长为2,中点为,取,中点,侧面的中心为,连接,如图,由题意可知,为球心,在正方体中,,即,则球心到的距离为,所以球与棱相切,球面与棱只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有1个交点,所以以EF为直径的球面与正方体每条棱的交点总数为12.故答案为:128.(2019·全国·高考Ⅱ卷)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.【答案】共26个面.棱长为.【分析】第一问可按题目数出来,第二问需在正方体中简单还原出物体位置,利用对称性,平面几何解决.【详解】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有个面.如图,设该半正多面体的棱长为,则,延长与交于点,延长交正方体棱于,由半正多面体对称性可知,为等腰直角三角形,,,即该半正多面体棱长为.【点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.考点04空间几何题的情景化应用1.(2023·北京·统考高考真题)坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,且等腰梯形所在的平面、等腰三角形所在的平面与平面的夹角的正切值均为,则该五面体的所有棱长之和为(

A. B.C. D.【答案】C【分析】先根据线面角的定义求得,从而依次求,,,,再把所有棱长相加即可得解.【详解】如图,过做平面,垂足为,过分别做,,垂足分别为,,连接,

由题意得等腰梯形所在的面、等腰三角形所在的面与底面夹角分别为和,所以.因为平面,平面,所以,因为,平面,,所以平面,因为平面,所以,.同理:,又,故四边形是矩形,所以由得,所以,所以,所以在直角三角形中,在直角三角形中,,,又因为,所有棱长之和为.故选:C2.(2022·全国·统考新高考Ⅱ卷)图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为.已知成公差为0.1的等差数列,且直线的斜率为0.725,则(

)A.0.75 B.0.8 C.0.85 D.0.9【答案】D【分析】设,则可得关于的方程,求出其解后可得正确的选项.【详解】设,则,依题意,有,且,所以,故,故选:D3.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为(

)A.23 B.24 C.26 D.27【答案】D【分析】作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.【详解】该几何体由直三棱柱及直三棱柱组成,作于M,如图,因为,所以,因为重叠后的底面为正方形,所以,在直棱柱中,平面BHC,则,由可得平面,设重叠后的EG与交点为则则该几何体的体积为.故选:D.4.(2021·全国·统考新高考Ⅱ卷)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影满足,.由C点测得B点的仰角为,与的差为100;由B点测得A点的仰角为,则A,C两点到水平面的高度差约为()(

)A.346 B.373 C.446 D.473【答案】B【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得,进而得到答案.【详解】过作,过作,故,由题,易知为等腰直角三角形,所以.所以.因为,所以在中,由正弦定理得:,而,所以所以.故选:B.5.(2021·全国·统考高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为(

)A.26% B.34

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论