版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【成才之路】-学年高中数学1.4空间图形的基本关系与公理基础巩固北师大版必修2一、选择题1.已知点A,直线a,平面α:①A∈a,a⃘α⇒A∉α②A∈a,a∈α⇒A∈α③A∉a,aα⇒A∉α④A∈a,aα⇒Aα以上命题表述正确的个数是()A.0 B.1C.2 D.3[答案]A[解析]①中若a与α相交,且交点为A,则不正确;②中“a∈α”符号不对;③中A可以在α内,也可以在α外,故不正确;④符号“Aα”错.2.在空间中,下列命题成立的有________个()①两组对边都平行的四边形是平行四边形②两组对边分别相等的四边形是平行四边形③顺次连接空间四边形各边中点所得的一定是平行四边形④对角线互相平分的四边形是平行四边形A.1 B.2C.3 D.4[答案]C[解析]②错误.3.在空间中,可以确定一个平面的条件是()A.两两相交的三条直线B.三条直线,其中一条直线与另外两条直线分别相交C.三个点D.三条直线,它们两两相交,但不交于同一点[答案]D[解析]A中两两相交的三条直线,它们可能交于同一个点,也可能不交于同一个点,若交于同一个点,则三条直线不一定在同一个平面内,故排除A;B中的另外两条直线可能共面,也可能不共面,当另外两条直线不共面时,则三条直线不能确定一个平面,故排除B;对于C来说,三个点的位置可能不在同一条直线上,也可能在同一条直线上,只有前者才能确定一个平面,因此,排除C;只有条件D中的三条直线,它们两两相交且不交于同一点,因而其三个交点不在同一条直线上,由公理1知其可以确定一个平面.4.如图所示,正方体ABCD-A1B1C1D1的棱BB1和BC的中点分别是E,F,各棱所在的直线与直线EFA.4 B.6C.8 D.10[答案]C[解析]AB,AD,AA1,A1B1,A1D1,D1D,D1C1,DC与直线EF5.如图,M是正方体ABCD-A1B1C1D1的棱DD1①过M点有且只有一条直线与直线AB,B1C1②过M点有且只有一条直线与直线AB,B1C1③过M点有且只有一个平面与直线AB,B1C1④过M点有且只有一个平面与直线AB,B1C1其中真命题是()A.②③④ B.①③④C.①②④ D.①②③[答案]C[解析]①若还能作一条线,则两相交线确定一平面,从而证明AB,B1C1共面与它们异面矛盾,从而假设不正确,①正确,②④也是同样的方法证明.将过点M的平面CDD1C1绕直线DD1旋转任意非零的角度,所得的平面与直线AB,B1C16.已知α、β为平面,A、B、M、N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒aβB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A、B、M∈α,A、B、M∈β,且A、B、M不共线⇒α、β重合[答案]C[解析]∵A∈α,A∈β.∴A∈α∩β由公理3知α∩β为经过A的一条直线而不是A.故α∩β=A写法错误.二、填空题7.在正方体ABCD-A1B1C1D1中,与直线CC1[答案]3[解析]与CC1平行的棱有AA1,BB1,DD1.8.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有________个.[答案]1或4[解析]四点共面时,为一个平面;四点不共面时,可作4个平面.三、解答题9.已知正方体ABCD-A1B1C1D1中,E、F分别为D1C1、C1B1的中点,AC∩BD=P,A1C1∩EF求证:(1)D、B、F、E四点共面;(2)若A1C交平面DBFE于R点,则P、Q、R[解析]如图(1)∵EF是△D1B1C1的中位线,∴EF∥B1D1在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF、BD确定一个平面,即D、B、F、E四点共面.(2)正方体AC1中,设A1ACC1确定的平面为α,又设平面BDEF为β.∵Q∈A1C1,∴Q∈α,又Q∈EF,∴Q∈β则Q是α与β的公共点,同理,P点也是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C,∴R∈α,且R∈故R∈PQ.所以P、Q、R三点共线.一、选择题1.若P是两条异面直线l、m外的任意一点,则()A.过点P有且仅有一条直线与l、m都平行B.过点P有且仅有一条直线与l、m都垂直C.过点P有且仅有一条直线与l、m都相交D.过点P有且仅有一条直线与l、m都异面[答案]B[解析]对于A,若正确,则l∥m,这与已知矛盾,由此排除A.对于B,由于l和m有且只有一条公垂线a,而过P有且只有一条直线与直线a平行,故B正确.2.如图所示,在正方体ABCD-A1B1C1D1中,E,F,G,H分别为AA1,AB,BB1,B1C1的中点,则异面直线EF与A.45° B.60°C.90° D.120°[答案]B[解析]取A1B1的中点M,连接GM,HM.∵在正方体ABCD-A1B1C1D1中,M,H,G分别为A1B1,B1C1,B1∴△GMH为正三角形,EF∥MG.于是∠MGH为异面直线EF与GH所成的角,即为60°角.二、填空题3.如图表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中相互异面的有________对.[答案]3[解析]将展开图恢复成正方体后,得到AB与CD,EF与GH,AB与GH三对异面直线.4.如图,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________(注:把你认为正确的结论的序号都填上).[答案]③④三、解答题5.如图所示,在长方体ABCD-A1B1C1D1中,P为棱BB1的中点,画出由A1,C1,P三点所确定的平面α[解析]因为点P既在平面α内又在平面AB1内,所以点P在平面α与平面AB1的交线上.同理,点A1在平面α与平面AB1的交线上.因此,PA1就是平面α与平面AB1的交线.同理可得:交线A1C1与交线PC1所以由A1,C1,P三点所确定的平面α与长方体表面的交线如图所示.6.如图所示,在四边形ABCD中,已知AB∥CD,直线AB,BC,AD,DC分别与平面α相交于点E,G,H,F.求证:E,F,G,H四点必定共线.[解析]∵AB∥CD,∴AB,CD确定一个平面β.又∵AB∩α=E,ABβ,∴E∈α,E∈β,即E为平面α与平面β的一个公共点.同理可证,F,G,H为平面α与平面β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴E,F,G,H四点必定共线.7.如图,两个三角形ABC和A′B′C′的对应顶点的连线AA′、BB′、CC′交于同一点O,且eq\f(OA,OA′)=eq\f(BO,OB′)=eq\f(CO,OC′)=eq\f(2,3).(1)求证:A′B′∥AB,A′C′∥AC,B′C′∥BC;(2)求eq\f(S△ABC,S△A′B′C′)的值.[解析](1)证明:∵AA′与BB′交于点O,且eq\f(AO,OA′)=eq\f(BO,OB′)=eq\f(2,3),∴AB∥A′B′.同理AC∥A′C′,BC∥B′C′.(2)∵A′B′∥AB,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年医用材料制造项目投资申请报告代可行性研究报告
- 2024项目程序代码开发安全规范
- 资产评估学教程-练习答案 2
- 2023-2024学年广东省深圳市龙华区九年级(上)期中英语试卷
- 百家号批量发布软件怎么赛选关键词
- 三年级数学计算题专项练习及答案
- 电冰箱、空调器安装与维护电子教案 2.2 电冰箱的拆装
- 再生育申请审批表
- 广东省深圳市罗湖区2024-2025学年一年级上学期月考语文试卷
- 黑龙江省齐齐哈尔市富裕县第二中学2024-2025学年九年级上学期11月期中考试化学试题(含答案)
- 双师同堂课题中期报告
- 怎样提出好的改善提案5篇
- 口腔诊疗前、中、后牙椅消毒流程(全)
- 《服装市场营销》课程标准.
- xx医院三季度药事管理委员会会议纪要
- 保护野生动物的英文宣传标语
- 茶叶审评细则 - 茶业大赛
- 临床带教工作流程
- 杜瓦罐使用说明书
- 红色沉稳大气商务通用微立体企业公司介绍公司简介公司产品宣传营销策划方案动态ppt模板
- 园林景观施工界面划分(参考模板)
评论
0/150
提交评论