版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省松原市名校2025届八年级数学第一学期期末学业水平测试模拟试题试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若分式的值为0,则的值是()A. B. C. D.2.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对3.如图,在中,AB、AC的垂直平分线分别交BC于点E、F,若,则为A. B. C. D.4.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(-,1) B.(-1,) C.(,1) D.(-,-1)5.如图,已知AB=AC=BD,则∠1与∠2的关系是()A.3∠1﹣∠2=180° B.2∠1+∠2=180°C.∠1+3∠2=180° D.∠1=2∠26.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC=15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个 B.2个 C.3个 D.4个7.下面是某次小华的三科考试成绩,他的三科考试成绩的平均分是()学科数学语文英语考试成绩919488A.88 B.90 C.91 D.928.二次根式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥﹣1 C.x≠2 D.x≥﹣1且x≠29.如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于CP+EP最小值的是()A.AC B.AD C.BE D.BC10.解分式方程,可得分式方程的解为()A. B. C. D.无解11.如图,在中,分别是边上的点,若≌≌,则的度数为()A. B. C. D.12.一个正多边形,它的一个内角恰好是一个外角的倍,则这个正多边形的边数是()A.八 B.九 C.十 D.十二二、填空题(每题4分,共24分)13.如图,在中,,点在边上,且则__________.14.计算(x-a)(x+3)的结果中不含x的一次项,则a的值是________.15.现有一个长方形纸片,其中.如图所示,折叠纸片,使点落在边上的处,折痕为,当点在上移动时,折痕的端点、也随之移动.若限定、分别在、边上移动,则点在边上可移动的最大距离为_________.16.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD为∠CAB的角平分线,若CD=3,则DB=____.17.二元一次方程组的解为_________.18.如图,平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点B的坐标为(10,6),点P为BC边上的动点,当△POA为等腰三角形时,点P的坐标为_________.三、解答题(共78分)19.(8分)如图(1),,,垂足为A,B,,点在线段上以每秒2的速度由点向点运动,同时点在线段上由点向点运动.它们运动的时间为().(1),;(用的代数式表示)(2)如点的运动速度与点的运动速度相等,当时,与是否全等,并判断此时线段和线段的位置关系,请分别说明理由;(3)如图(2),将图(1)中的“,”,改为“”,其他条件不变.设点的运动速度为,是否存在有理数,与是否全等?若存在,求出相应的x、t的值;若不存在,请说明理由.20.(8分)小明平时喜欢玩“开心消消乐”游戏,本学期在学校组织的几次数学反馈性测试中,小明的数学成绩如下表:月份(第二年元月)(第二年2月)成绩(分)······(1)以月份为x轴,成绩为y轴,根据上表提供的数据在平面直角坐标系中描点;(2)观察(1)中所描点的位置关系,猜想与之间的的函数关系,并求出所猜想的函数表达式;(3)若小明继续沉溺于“开心消消乐“游戏,照这样的发展趋势,请你估计元月(此时)份的考试中小明的数学成绩,并用一句话对小明提出一些建议.21.(8分)如图,已知直线与轴,轴分别交于,两点,以为直角顶点在第二象限作等腰.(1)求点的坐标,并求出直线的关系式;(2)如图,直线交轴于,在直线上取一点,连接,若,求证:.(3)如图,在(1)的条件下,直线交轴于点,是线段上一点,在轴上是否存在一点,使面积等于面积的一半?若存在,请求出点的坐标;若不存在,请说明理由.22.(10分)四边形ABCD中,AD=CD,AB=CB,我们把这种两组邻边分别相等的四边形叫做“筝形”.“筝形”是一种特殊的四边形,它除了具有两组邻边分别相等的性质外,猜想它还有哪些性质?然后证明你的猜想.(以所给图形为例,至少写出三种猜想结果,用文字和字母表示均可,并选择猜想中的其中一个结论进行证明)23.(10分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?24.(10分)阅读理解(发现)如果记,并且f(1)表示当x=1时的值,则f(1)=______;表示当时的值,则______;表示当时的值,则=______;表示当时的值,则______;表示当时的值,则______;(拓展)试计算的值.25.(12分)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于x轴对称的△A1B1C1;(2)将△ABC向左平移4个单位长度,画出平移后的△A2B2C2;(3)若在如图的网格中存在格点P,使点P的横、纵坐标之和等于点C的横、纵坐标之和,请写出所有满足条件的格点P的坐标(C除外).26.如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(-18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,∠OFE=45°,求直线DE的解析式;(3)求点D的坐标.
参考答案一、选择题(每题4分,共48分)1、B【分析】分式的值是1,则分母不为1,分子是1.【详解】解:根据题意,得且,
解得:.
故选:B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1.这两个条件缺一不可.2、A【详解】∵k=﹣2<0,∴y随x的增大而减小,∵1<2,∴a>b.故选A.3、D【分析】根据三角形内角和定理求出∠C+∠B=68°,根据线段垂直平分线的性质得到EC=EA,FB=FA,根据等腰三角形的性质得到∠EAC=∠C,∠FAB=∠B,计算即可.【详解】解:,,、FH分别为AC、AB的垂直平分线,,,,,,,故选D.【点睛】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.4、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.5、A【分析】根据等腰三角形的性质和三角形内角和定理可得∠1和∠C之间的关系,再根据三角形外角的性质可得∠1和∠2之间的关系.【详解】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选A.【点睛】本题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.6、D【分析】根据周角的定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【详解】根据题意,,,,正确;根据题意可得四边形ABCD是轴对称图形,④正确;∵∠DAB+∠ABC=45°+60°+60°+15°=180°,∴AD//BC,②正确;∵∠ABC+∠BCP=60°+15°+15°=90°,∴PC⊥AB,③正确,所以四个命题都正确,故选D.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、等腰三角形的判定与性质、轴对称图形的定义与判定等,熟练掌握各相关性质与定理是解题的关键.7、C【分析】根据“平均分=总分数÷科目数”计算即可解答.【详解】解:(分),故小华的三科考试成绩平均分式91分;故选:C.【点睛】这个题目考查的是平均数的问题,根据题意正确计算即可.8、B【分析】直接利用二次根式的定义得出x的取值范围进而得出答案.【详解】解:二次根式在实数范围内有意义,,解得:.故选:B.【点睛】本题主要考查了二次根式有意义的条件,正确把握定义是解题关键.9、C【分析】如图连接PB,只要证明PB=PC,即可推出PC+PE=PB+PE,由PE+PB≥BE,可得P、B、E共线时,PB+PE的值最小,最小值为BE的长度.【详解】解:如图,连接PB,
∵AB=AC,BD=CD,
∴AD⊥BC,
∴PB=PC,
∴PC+PE=PB+PE,
∵PE+PB≥BE,
∴P、B、E共线时,PB+PE的值最小,最小值为BE的长度,
故选:C.【点睛】本题考查轴对称-最短路线问题,等腰三角形的性质、线段的垂直平分线的性质,解题的关键是灵活运用所学知识解决问题.10、D【分析】先将分式去分母化成整式再求解,注意验证求解到的根是不是增根.【详解】解:去分母可得:整理可得:解得:经检验:是分式方程的增根,故原分式方程无解;故选:D.【点睛】本题主要考查解分式方程,需要注意的是最后的检验,将求解到的值代入最简公分母不为0,才是原分式方程的解.11、D【分析】根据全等三角形的性质求得∠BDE=∠CDE=90°,∠AEB=∠BED=∠CED=60°,即可得到答案.【详解】∵≌,∴∠BDE=∠CDE,∵∠BDE+∠CDE=180°,∴∠BDE=∠CDE=90°,∵≌≌,∴∠AEB=∠BED=∠CED,∵∠AEB+∠BED+∠CED=180°,∴∠AEB=∠BED=∠CED=60°,∴∠C=90°-∠CED=30°,故选:D.【点睛】此题考查了全等三角形的性质:全等三角形的对应角相等,以及平角的性质.12、C【分析】可设正多边形一个外角为x,则一个内角为4x,根据一个内角和一个外角互补列方程解答即可求出一个外角的度数,再根据多边形的外角和为360°解答即可.【详解】设正多边形一个外角为x,则一个内角为4x,根据题意得:x+4x=180°x=36°360°÷36°=10故这个正多边形为十边形.故选:C【点睛】本题考查的是正多边形的外角与内角,掌握正多边形的外角和为360°是关键.二、填空题(每题4分,共24分)13、36°【分析】设∠A=,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.【详解】设∠A=.
∵AD=CD,
∴∠ACD=∠A=;
∵CD=BC,
∴∠CBD=∠CDB=∠ACD+∠A=2;
∵AC=AB,
∴∠ACB=∠CBD=2,∵∠A+∠ACB+∠CBD=180°,
∴+2+2=180°,
∴=36°,
∴∠A=36°.故答案为:36°.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,利用了三角形的内角和定理得到相等关系,通过列方程求解是正确解答本题的关键.14、【分析】先根据多项式乘以多项式法则展开,合并同类项,令x的一次项系数为0,列出关于a的方程,求出即可.【详解】解:,∵不含x的一次项,∴3-a=0,∴a=3,故答案为:3.【点睛】本题考查了多项式乘以多项式法则,理解多项式中不含x的一次项即x的一次项的系数为0是解题的关键.不要忘记合并同类项.15、1【解析】根据翻折的性质,可得BA′与AP的关系,根据线段的和差,可得A′C,根据勾股定理,可得A′C,根据线段的和差,可得答案.【详解】①当P与B重合时,BA′=BA=6,CA′=BC−BA′=10−6=1,②当Q与D重合时,由勾股定理,得CA′==8,CA′最远是8,CA′最近是1,点A′在BC边上可移动的最大距离为8−1=1,故答案为1.【点睛】本题考查了翻折变换,利用了翻折的性质,勾股定理,分类讨论是解题关键.16、1【分析】先根据三角形的内角和定理,求出∠BAC的度数=180°﹣90°﹣30°=10°,然后利用角平分线的性质,求出∠CAD的度数∠BAC=30°.在Rt△ACD中,根据30°角所对的直角边等于斜边的一半,即可求出AD的长,进而得出BD.【详解】在Rt△ABC中∠C=90°,∠B=30°,∴∠BAC=180°﹣90°﹣30°=10°.∵AD是角平分线,∴∠BAD=∠CAD∠BAC=30°.在Rt△ACD中,∵∠CAD=30°,CD=3,∴AD=1.∵∠B=∠BAD=30°,∴BD=AD=1.故答案为1.【点睛】本题考查了含30°角的直角三角形,熟记含30°角的直角三角形的性质是解题的关键.17、【分析】方程组利用加减消元法求出解即可.【详解】解,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为,故答案为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18、(2,6)、(5,6)、(8,6)【解析】当PA=PO时,根据P在OA的垂直平分线上,得到P的坐标;当OP=OA=10时,由勾股定理求出CP即可;当AP=AO=10时,同理求出BP、CP,即可得出P的坐标.【详解】当PA=PO时,P在OA的垂直平分线上,P的坐标是(5,6);当OP=OA=10时,由勾股定理得:CP==8,P的坐标是(8,6);当AP=AO=10时,同理BP=8,CP=10-8=2,P的坐标是(2,6).故答案为(2,6),(5,6),(8,6).【点睛】本题主要考查对矩形的性质,等腰三角形的性质,勾股定理,坐标与图形的性质等知识点的理解和掌握,能求出所有符合条件的P的坐标是解此题的关键.三、解答题(共78分)19、(1)2t,8-2t;(2)△ADP与△BPQ全等,线段PD与线段PQ垂直,理由见解析;(3)存在或,使得△ADP与△BPQ全等.【分析】(1)根据题意直接可得答案.(2)由t=1可得△ACP和△BPQ中各边的长,由SAS推出△ACP≌△BPQ,进而根据全等三角形性质得∠APC+∠BPQ=90°,据此判断线段PC和PQ的位置关系;(3)假设△ACP≌△BPQ,用t和x表示出边长,根据对应边相等解出t和x的值;再假设△ACP≌△BQP,用上步的方法求解,注意此时的对应边和上步不一样.【详解】(1)由题意得:2t,8-2t.(2)△ADP与△BPQ全等,线段PD与线段PQ垂直.理由如下:当t=1时,AP=BQ=2,BP=AD=6,又∠A=∠B=90°,在△ADP和△BPQ中,,∴△ADP△BPQ(SAS),∴∠ADP=∠BPQ,∴∠APD+∠BPQ=∠APD+∠ADP=90°,∴∠DPQ=90°,即线段PD与线段PQ垂直.(3)①若△ADP△BPQ,则AD=BP,,AP=BQ,则,解得;②若△ADP△BQP,则AD=BQ,AP=BP,则,解得:;综上所述:存在或,使得△ADP与△BPQ全等.【点睛】本题考查全等三角形的判定与性质,解题关键是熟练掌握全等三角形的性质和判定定理.20、(1)见解析;(2)y与x之间的函数关系式为:y=-10x+180;(3)估计元月份期末考试中小明的数学成绩是50分;建议:希望小明不要再沉溺于“开心消消乐”游戏,努力学习,提高学习成绩.【分析】(1)根据点的坐标依次在图象中描出各点,再顺次连接即可;(2)根据图象的特征可猜想y是x的一次函数,设y=kx+b,把点(9,90)、(10,80)代入即可根据待定系数法求得结果;(3)把x=13代入(2)中的函数关系式即可求得结果.【详解】(1)如图所示:(2)猜想:y是x的一次函数,设解析式为y=kx+b,把点(9,90)、(10,80)代入得,解得:,∴解析式为:y=-10x+180,当x=11时,y=-10x+180=-110+180=70,当x=12时,y=-10x+180=-120+180=60,所以点(11,70)、(12,60)均在直线y=-10x+180上,∴y与x之间的函数关系式为:y=-10x+180;(3)∵当x=13时,y=-10x+180=-130+180=50,∴估计元月份期末考试中小明的数学成绩是50分,希望小明不要再沉溺于“开心消消乐”游戏,努力学习,提高学习成绩.【点睛】本题考查了一次函数的应用,涉及了一次函数的图象,待定系数法求函数解析式等,弄清题意,找准各量间的关系是解题的关键.21、(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、(0,)、(1,-1),即可求解;(3)求出BC表达式,将点P代入,求出a值,再根据AC表达式求出M点坐标,由S△BMC=MB×yC=×10×2=10,S△BPN=S△BCM=5=NB×a=可求解.【详解】解:(1)令x=0,则y=4,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,4)、(﹣2,0),过点C作CH⊥x轴于点H,∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∠CHB=∠BOA=90°,BC=BA,在△CHB和△BOA中,,∴△CHB≌△BOA(AAS),∴BH=OA=4,CH=OB=2,∴点C(﹣6,2),将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+4;(2)同理可得直线CD的表达式为:y=﹣x﹣1①,则点E(0,﹣1),直线AD的表达式为:y=﹣3x+4②,联立①②并解得:x=2,即点D(2,﹣2),点B、E、D的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E是BD的中点,即BE=DE;(3)将点BC的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x-1,将点P(﹣,a)代入直线BC的表达式得:,直线AC的表达式为:y=x+4,令y=0,则x=-12,则点M(﹣12,0),S△BMC=MB×yC=×10×2=10,S△BPN=S△BCM=5=NB×a=,解得:NB=,故点N(﹣,0)或(,0).【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键.22、①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;详见解析【分析】根据题意,即可写出该图形的性质,然后选择一个进行证明即可.【详解】解:如图:①筝形具有轴对称性;或△ABD与△CBD关于直线BD对称;②筝形有一组对角相等;或∠DAB=∠DCB;③筝形的对角线互相垂直;或AC⊥BD;④筝形的一条对角线平分另一条对角线;或BD平分AC;⑤筝形的一条对角线平分一组对角;或BD平分∠ADC和∠ABC;理由:①AD=CD,AB=CB,BD=BD,∴△ABD≌△CBD;∴△ABD与△CBD关于直线BD对称;②由①△ABD≌△CBD,∴∠DAB=∠DCB;③∵AD=CD,AB=CB,∴点B、点D在线段AC的垂直平分线上,∴AC⊥BD;④由③可知,点B、点D在线段AC的垂直平分线上,∴BD平分AC;⑤由①知△ABD≌△CBD,∠ADB=∠CDB,∠ABD=∠CBD,∴BD平分∠ADC和∠ABC;【点睛】本题考查了“筝形”的性质,全等三角形的判定和性质,垂直平分线的性质,在轴对称的性质,解题的关键是熟练掌握所学的性质,正确找出“筝形”的性质.23、(1)三;(2)商品A的标价为90元,商品B的标价为120元;(3)1折.【分析】(1)根据图表可得小林第三次购物花的钱最少,买到A、B商品又是最多,所以小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,列出方程组求出x和y的值;(3)设商店是打m折出售这两种商品,根据打折之后购买9个A商品和8个B商品共花费1012元,列出方程求解即可.【详解】(1)小林以折扣价购买商品A、B是第三次购物;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打m折出售这两种商品,由题意得,(9×90+8×120)×=1012,解得:m=1.答:商店是打1折出售这两种商品的.24、,,,,;2012.5【分析】(1)【发
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宫颈细胞学规范化培训
- 《线性代数计算方法》课件
- 《选任培训细则》课件
- 会计职业道德培训
- 中医护理整体查房
- 什么是感觉微电影分库周欣然
- 三位数乘两位数能力练习练习题大全附答案
- 《纪律与工作生活》课件
- 《级解析学生版》课件
- 导诊护士礼仪培训
- HGT 2902-2024《模塑用聚四氟乙烯树脂》
- 洗浴中心传染病病例防控措施
- 三基三严模拟考试题(附答案)
- 子宫内膜癌-医师教学查房
- 买卖合同解除证明模板
- 美国刑法制度
- 北师大版数学六年级上册第六单元《比的认识》大单元整体教学设计
- 第13课 社会治理与总体国家安全观(课件)-【中职专用】高一思想政治《中国特色社会主义》(高教版2023·基础模块)
- 2024年教师招聘考试-中小学校长招聘笔试参考题库含答案
- QCSG1204009-2015电力监控系统安全防护技术规范
- (正式版)SHT 3158-2024 石油化工管壳式余热锅炉
评论
0/150
提交评论