2025届重庆市大足迪涛学校八年级数学第一学期期末教学质量检测试题含解析_第1页
2025届重庆市大足迪涛学校八年级数学第一学期期末教学质量检测试题含解析_第2页
2025届重庆市大足迪涛学校八年级数学第一学期期末教学质量检测试题含解析_第3页
2025届重庆市大足迪涛学校八年级数学第一学期期末教学质量检测试题含解析_第4页
2025届重庆市大足迪涛学校八年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届重庆市大足迪涛学校八年级数学第一学期期末教学质量检测试题检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图是一段台阶的截面示意图,若要沿铺上地毯(每个调节的宽度和高度均不同),已知图中所有拐角均为直角.须知地毯的长度,至少需要测量()A.2次 B.3次 C.4次 D.6次2.下列运算错误的是A. B.C. D.3.ABC的内角分别为A、B、C,下列能判定ABC是直角三角形的条件是()A.A2B3C B.C2B C.A:B:C3:4:5 D.ABC4.在一个三角形中,如果一个外角是其相邻内角的4倍,那么这个外角的度数为()A.36° B.45° C.135° D.144°5.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD6.下列图形中,是轴对称图形的是()A. B. C. D.7.如图,△CEF中,∠E=70°,∠F=50°,且AB∥CF,AD∥CE,连接BC,CD,则∠A的度数是()A.40° B.45° C.50° D.60°8.下列多项式中,不能用平方差公式分解的是()A. B.C. D.9.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,CE平分∠ACB,CE交BD于点O,那么图中的等腰三角形个数()A.4 B.6 C.7 D.810.如图,线段与交于点,且,则下面的结论中不正确的是()A. B.C. D.11.下列运算结果为的是A. B. C. D.12.下列图象不能反映y是x的函数的是()A. B.C. D.二、填空题(每题4分,共24分)13.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________。14.若是完全平方式,则______.15.若分式值为0,则=______.16.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则.17.a、b、c为△ABC的三条边,满足条件点(a﹣c,a)与点(0,﹣b)关于x轴对称,判断△ABC的形状_____.18.如图,已知,则_________.三、解答题(共78分)19.(8分)化简:2x2+(﹣2x+3y)(﹣2x﹣3y)﹣(x﹣3y)2,其中x=﹣2,y=﹣1.20.(8分)如图,CD∥EF,AC⊥AE,且∠α和∠β的度数满足方程组(1)求∠α和∠β的度数.(2)求证:AB∥CD.(3)求∠C的度数.21.(8分)如图,△ABC是等边三角形,BD是中线,延长BC至E,CE=CD,(1)求证:DB=DE(2)在图中过D作DF⊥BE交BE于F,若CF=4,求△ABC的周长.22.(10分)如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)试说明△ACD≌△BCE;(2)若∠D=50°,求∠B的度数.23.(10分)(1)计算:2(m+1)2﹣(2m+1)(2m﹣1);(2)先化简,再求值.[(x+2y)2﹣(x+y)(3x﹣y)﹣5y2]÷2x,其中x=﹣2,y=.24.(10分)如图,已知直线y=kx+6经过点A(4,2),直线与x轴,y轴分别交于B、C两点.(1)求点B的坐标;(2)求△OAC的面积.25.(12分)如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE=度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE=;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.26.如图,已知在同一直线上,,.求证:.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据平移的特点即可到达只需测量AH,HG即可得到地毯的长度.【详解】∵图中所有拐角均为直角∴地毯的长度AB+BC+CD+DE+EF+FG=AH+HG,故只需要测量2次,故选A.【点睛】本题主要运用平移的特征,把台阶的长平移成长方形的长,把台阶的高平移成长方形的宽,然后进行求解.2、D【解析】试题分析:根据分式的运算法则逐一计算作出判断:A.,计算正确;B.,计算正确;C.,计算正确;D.,计算错误.故选D.3、D【解析】根据直角三角形的性质即可求解.【详解】若ABC又AB+C=180°∴2∠C=180°,得∠C=90°,故为直角三角形,故选D.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知三角形的内角和.4、D【分析】一个外角与其相邻的内角和是180°,设内角为x,根据题意列方程4x+x=180°,求解即可.【详解】设内角为x,则4x+x=180°,解得x=36°,所以外角=4x=436°=144°,故选D.【点睛】本题考查了三角形的外角和内角和,根据题意列出方程是解题的关键.5、D【解析】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.6、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、不是轴对称图形,故本选项不符合题意;

B、不是轴对称图形,故本选项不符合题意;

C、是轴对称图形,故本选项符合题意;

D、不是轴对称图形,故本选项不符合题意.

故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、D【分析】连接AC并延长交EF于点M.由平行线的性质得,,再由等量代换得,先求出即可求出.【详解】连接AC并延长交EF于点M.∵,∴,∵,∴,∴,∵,∴,故选D.【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.8、D【分析】根据平方差公式a2-b2=(a+b)(a-b),分别判断得出即可.【详解】解:A、a2b2-1=(ab+1)(ab-1),可以用平方差公式分解因式,故此选项错误;B、4-0.25a2=(2-0.5a)(2+0.5a),可以用平方差公式分解因式,故此选项错误;C、-x2+1=(1+x)(1-x),可以用平方差公式分解因式,故此选项错误;D、不能用平方差公式分解因式,故此选项正确;故选D.【点睛】本题主要考查了公式法分解因式,熟练利用平方差公式是解题关键.9、D【分析】由在△ABC中,AB=AC,∠A=36°,根据等边对等角,即可求得∠ABC与∠ACB的度数,又由BD、CE分别为∠ABC与∠ACB的角平分线,即可求得∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,然后利用三角形内角和定理与三角形外角的性质,即可求得∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,由等角对等边,即可求得答案.【详解】解:∵在△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∵BD平分∠ABC,CE平分∠ACB,∴∠ABD=∠CBD=∠ACE=∠BCE=∠A=36°,∴AE=CE,AD=BD,BO=CO,∴△ABC,△ABD,△ACE,△BOC是等腰三角形,∵∠BEC=180°﹣∠ABC﹣∠BCE=72°,∠CDB=180°﹣∠BCD﹣∠CBD=72°,∠EOB=∠DOC=∠CBD+∠BCE=72°,∴∠BEO=∠BOE=∠ABC=∠ACB=∠CDO=∠COD=72°,∴BE=BO,CO=CD,BC=BD=CE,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选:D.【点睛】本题考查了等腰三角形的判定,灵活的利用等腰三角形的性质确定角的度数是解题的关键.10、B【分析】根据SSS可以证明△ABC≌△BAD,从而得到其对应角相等、对应边相等.【详解】解:A、根据SSS可以证明△ABC≌△BAD,故本选项正确;

B、根据条件不能得出OB,OC间的数量关系,故本选项错误;

C、根据全等三角形的对应角相等,得∠CAB=∠DBA,故本选项正确;

D、根据全等三角形的对应角相等,得∠C=∠D,故本选项正确.

故选:B.【点睛】此题综合考查了全等三角形的判定和性质,注意其中的对应关系.11、D【分析】根据整式运算法则逐个分析即可.【详解】A.,B.,C.=,D.=.故选D【点睛】本题考核知识点:整式基本运算.解题关键点:掌握实数运算法则.12、C【详解】解:A.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意;B.当x取一值时,y有唯一与它对应的值,y是x的函数,;不符合题意C.当x取一值时,y没有唯一与它对应的值,y不是x的函数,符合题意;D.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意.故选C.二、填空题(每题4分,共24分)13、a<b【分析】先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,再比较出其大小即可.【详解】∵点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,∴a=(-2)×(-1)+1=3,b=(-2)×(-2)+1=5,3<5,∴a<b.故答案为:a<b.【点睛】本题考查的一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.14、【分析】这里首末两项是x和2这两个数的平方,那么中间一项为加上或减去x和2积的2倍,故m=±1.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15、1【分析】分式的值为零,分子等于零且分母不等于零.【详解】当=2时,=2,x≠2解得x=1.故答案是:1.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.16、a5+5a4b+10a3b2+10a2b3+5ab4+b5【分析】分析题意得到规律,再把这个规律应用于解题.【详解】由题意分析可知,a5+5a4b+10a3b2+10a2b3+5ab4+b53故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5考点:找规律-数字的变化17、等边三角形.【解析】由两点关于x轴对称可得a-c=0,a=b,进而根据三角形三边关系判断△ABC的形状即可.【详解】解:∵点(a-c,a)与点(0,-b)关于x轴对称,∴a-c=0,a=b,∴a=b=c,∴△ABC是等边三角形,故答案为等边三角形.【点睛】此题主要考查两点关于x轴对称的坐标的特点:横坐标不变,纵坐标互为相反数.18、45°【分析】根据三角形外角的性质得出∠ACD=∠2+∠B,再利用即可求出∠DCE的度数.【详解】∵∠ACD=∠2+∠B=∠1+∠DCE,∴,故答案为:45°.【点睛】此题考查三角形的外角性质,三角形的外角等于与它不相邻的两个内角的和,熟记性质并熟练运用是解题的关键.三、解答题(共78分)19、5x3+6xy﹣18y3,3【分析】先算乘方和乘法,再合并同类项,最后代入求值.【详解】原式=3x3+4x3﹣9y3﹣x3+6xy﹣9y3=5x3+6xy﹣18y3,当x=﹣3,y=﹣1时,原式=5×4+6×3﹣18×1=3.【点睛】本题考查了整式的混合运算及乘法公式.可利用平方差公式计算(-3x+3y)(-3x-3y),利用完全平方公式计算(x-3y)3..20、(1)∠α和∠β的度数分别为55°,125°;(2)见解析;(3)∠C=35°.【分析】(1)根据方程组,可以得到∠α和∠β的度数;

(2)根据(1)∠α和∠β的度数,可以得到AB∥EF,再根据CD∥EF,即可得到AB∥CD;

(3)根据AB∥CD,可得∠BAC+∠C=180°,再根据AC⊥AE和∠α的度数可以得到∠BAC的度数,从而可以得到∠C的度数.【详解】解:(1),①﹣②,得3∠α=165°,解得,∠α=55°,把∠α=55°代入②,得∠β=125°,即∠α和∠β的度数分别为55°,125°;(2)证明:由(1)知,∠α=55°,∠β=125°,则∠α+∠β=180°,故AB∥EF,又∵CD∥EF,∴AB∥CD;(3)∵AB∥CD,∴∠BAC+∠C=180°,∵AC⊥AE,∴∠CAE=90°,又∵∠α=55°,∴∠BAC=145°,∴∠C=35°.【点睛】本题考查平行线的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.21、(1)证明见解析;(2)48.【分析】(1)根据△ABC是等边三角形,BD是中线,可知∠DBC=30°,由CE=CD,∠ACD=60°可求得∠DCE=30°,即∠DBC=∠DCE,则DB=DE;(2)根据Rt△DCF中∠FCD=30°知CD=2CF=4,即可知AC=8,则可求出△ABC的周长.【详解】(1)解:证明:∵△ABC是等边三角形,BD是中线,∴∠ABC=∠ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵CE=CD,∴∠CDE=∠CED.又∵∠BCD=∠CDE+∠CED,∴∠CDE=∠CED=∠BCD=30°.∴∠DBC=∠DEC.∴DB=DE(等角对等边);(2)解:∵∠CDE=∠CED=∠BCD=30°,DF⊥BE.∴∠CDF=30°,∵CF=4,∴DC=8,∵AD=CD,∴AC=16,∴△ABC的周长=3AC=48.【点睛】此题主要考察等边三角形的计算,抓住角度的特点是解题的关键.22、(1)见解析;(2)70°.【分析】(1)由C是线段AB的中点,得到AC=BC,根据角平分线的定义得到∠ACD=∠BCE.则可证三角形全等;

(2)根据平角的定义得到∠ACD=∠DCE=∠BCE=60°,根据全等三角形的性质得到∠E=∠D=50°,根据三角形的内角和即可得到结论.【详解】(1)证明:∵C是线段AB的中点∴AC=BC∵CD平分∠ACE,CE平分∠BCD,∴∠ACD=∠ECD,∠BCE=∠ECD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).(2)解:∵△ACD≌△BCE,∴∠D=∠E=50°,∵∠ACD+∠DCE+∠BCE=180°,∠ACD=∠DCE=∠BCE,∴∠ACD=∠DCE=∠BCE=60°,∴∠B=180°-∠BCE-∠E=70°.【点睛】本题考查全等三角形的判定和性质、三角形内角和定理等知识,解题的关键是正确寻找全等三角形全等的条件.23、(1)﹣2m2+4m+3;(2)﹣x+y,.【分析】(1)直接利用乘法公式化简进而合并同类项即可;(2)直接利用多项式的乘法运算进而结合整式的混合运算法则计算得出答案.【详解】(1)原式=2(m2+2m+1)﹣(4m2﹣1)=2m2+4m+2﹣4m2+1=﹣2m2+4m+3;(2)原式=(x2+4xy+4y2﹣3x2﹣2xy+y2﹣5y2)÷2x=(﹣2x2+2xy)÷2x=﹣x+y,当x=﹣2,y=时,原式=2+=.【点睛】此题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解题的关键.24、(1)B(6,0);(2)1【分析】(1)根据待定系数法求得直线解析式,然后根据图象上点的坐标特征即可求得B的坐标;(2)令x=0,求得C的坐标,然后根据三角形面积公式即可求得.【详解】解:(1)∵直线y=kx+6经过点A(4,2),∴2=4k+6,解得k=﹣1∴直线为y=﹣x+6令y=0,则﹣x+6=0,解得x=6,∴B(6,0);(2)令x=0,则y=6,∴C(0,6),∴CO=6,∴△OAC的面积=×4=1.【点睛】本题考查的知识点是一次函数的图象上点的坐标特征,属于基础题目,易于掌握.25、(1)20;(2)y﹣x;(3)(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论