2025届海南省乐东县八年级数学第一学期期末学业水平测试试题含解析_第1页
2025届海南省乐东县八年级数学第一学期期末学业水平测试试题含解析_第2页
2025届海南省乐东县八年级数学第一学期期末学业水平测试试题含解析_第3页
2025届海南省乐东县八年级数学第一学期期末学业水平测试试题含解析_第4页
2025届海南省乐东县八年级数学第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届海南省乐东县八年级数学第一学期期末学业水平测试试题题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若是无理数,则的值可以是()A. B. C. D.2.在平行四边形ABCD中,对角线AC,BD交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A.1<m<11 B.2<m<22 C.10<m<12 D.5<m<63.函数的自变量的取值范围是()A. B. C.且 D.4.设等式在实数范围内成立,其中a、x、y是两两不同的实数,则的值是()A.3 B. C.2 D.5.元旦期间,某水果店第一天用320元钱购进苹果销售,第二天又用800元钱购进这种苹果,所购数量是第一天购进数量的2倍,但每千克苹果的价格比第一天购进价多1元,若设水果店第一天购进水果千克苹果,则可列方程为().A. B. C. D.6.如图,和都是等腰直角三角形,,,的顶点在的斜边上,若,则两个三角形重叠部分的面积为()A.6 B.9 C.12 D.147.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是().A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可8.下面计算正确的是()A.2a+3b=5ab B.a2+a3=a5 C.(﹣2a3b2)3=﹣8a9b6 D.a3•a2=a69.下列计算正确的是()A.2a2+3a3=5a5 B.a6÷a2=a3C. D.(a﹣3)﹣2=a﹣510.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A. B. C. D.11.ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定ABC为直角三角形的是()A.∠A+∠B=∠C B.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2 D.a:b:c=3:4:612.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A.0.34×10-6米 B.3.4×10-6米 C.34×10-5米 D.3.4×10-5米二、填空题(每题4分,共24分)13.如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组>>-2的解集是_________14.把多项式因式分解的结果是__________.15.将一组数据中的每一个数都加上1得到一组新的数据,那么在众数、中位数、平均数、方差这四个统计量中,值保持不变的是_____.16.对于任意实数,规定的意义是=ad-bc.则当x2-3x+1=0时,=______.17.如图,一次函数与一次函数的图像相交于点,则关于的不等式的解集为__________.18.的平方根是±3,的立方根是2,则的值是_______.三、解答题(共78分)19.(8分)分解因式:①4m2﹣16n2②(x+2)(x+4)+120.(8分)如图所示,在中,,D是上一点,过点D作于点E,延长和,相交于点F,求证:是等腰三角形.21.(8分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出关于y轴对称的;(2)写出点的坐标(直接写答案);(3)在y轴上画出点P,使PB+PC最小.22.(10分)因式分解:(1);(2)23.(10分)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-5,5),(-2,3).(1)请在图中的网格平面内画出平面直角坐标系xOy;(2)请画出△ABC关于y轴对称的△A1B1C1,并写出顶点A1,B1,C1的坐标(3)请在x轴上求作一点P,使△PB1C的周长最小.请标出点P的位置(保留作图痕迹,不需说明作图方法)24.(10分)本学期我们学习了角平分线的性质定理及其逆定理,那么,你是否还记得它们的具体内容.(1)请把下面两个定理所缺的内容补充完整:角平分线的性质定理:角平分线上的点到______的距离相等.角平分线性质定理的逆定理:到角的两边距离相等的点在______.(2)老师在黑板上画出了图形,把逆定理的已知、求证写在了黑板上,可是有些内容不完整,请你把内容补充完整.已知:如右图,点是内一点,,,垂足分别为、,且______.求证:点在的______上(3)请你完成证明过程:(4)知识运用:如图,三条公路两两相交,现在要修建一个加油站,使加油站到三条公路的距离相等,加油站可选择的位置共有______处.25.(12分)如图,已知过点的直线与直线:相交于点.(1)求直线的解析式;(2)求四边形的面积.26.阅读下列一段文字,然后回答下列问题.已知平面内两点M(x1,y1)、N(x2,y2),则这两点间的距离可用下列公式计算:MN=.例如:已知P(3,1)、Q(1,﹣2),则这两点间的距离PQ==.特别地,如果两点M(x1,y1)、N(x2,y2)所在的直线与坐标轴重合或平行于坐标轴或垂直于坐标轴,那么这两点间的距离公式可简化为MN=丨x1﹣x2丨或丨y1﹣y2丨.(1)已知A(1,2)、B(﹣2,﹣3),试求A、B两点间的距离;(2)已知A、B在平行于x轴的同一条直线上,点A的横坐标为5,点B的横坐标为﹣1,试求A、B两点间的距离;(3)已知△ABC的顶点坐标分别为A(0,4)、B(﹣1,2)、C(4,2),你能判定△ABC的形状吗?请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【解析】根据无理数的概念和算术平方根解答即可.【详解】A.是有理数,错误;B.是有理数,错误;C.是无理数,正确;D.是有理数,错误.故选:C.【点睛】本题考查了无理数,关键是根据无理数的概念和算术平方根解答.2、A【分析】根据三角形三边关系判断即可.【详解】∵ABCD是平行四边形,AC=12,BD=10,O为AC和BD的交点,∴AO=6,BO=5,∴6-5<m<6+5,即1<m<11故选:A.【点睛】本题考查平行四边形的性质和三角形的三边关系,关键在于熟记三角关系.3、C【分析】根据二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0,列出不等式即可得出结论.【详解】解:由题意可知:解得:且故选C.【点睛】此题考查的是求自变量的取值范围,掌握二次根据有意义的条件:被开方数≥0、分式有意义的条件:分母≠0和零指数幂有意义的条件:底数≠0是解决此题的关键.4、B【分析】根据根号下的数要是非负数,得到a(x-a)≥1,a(y-a)≥1,x-a≥1,a-y≥1,推出a≥1,a≤1,得到a=1,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥1,a(y-a)≥1,x-a≥1,a-y≥1,a(x-a)≥1和x-a≥1可以得到a≥1,a(y-a)≥1和a-y≥1可以得到a≤1,所以a只能等于1,代入等式得=1,所以有x=-y,即:y=-x,由于x,y,a是两两不同的实数,∴x>1,y<1.将x=-y代入原式得:原式=.故选B.【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a、x、y的值和代入求分式的值是解此题的关键.5、D【分析】设该店第一次购进水果千克,则第二次购进水果千克,然后根据每千克水果的价格比第一次购进的贵了1元,列出方程求解即可.【详解】设该商店第一次购进水果x千克,根据题意得:,故选:D.【点睛】本题考查了分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.6、C【分析】先根据已知条件,证明图中空白的三个小三角形相似,即,根据,求出AF的值,再求出BF的值,由于△ACF与△ABC同高,故面积之比等于边长之比,最后根据AF与BF的关系,得出△ACF与△ABC的面积之比,由于△ABC的面积可求,故可得出阴影部分的面积.【详解】根据题意,补全图形如下:图中由于和都是等腰直角三角形,故可得出如下关系:,由此可得,继而得到,令,则,根据勾股定理,得出:那么,解出,由于△ACF与△ABC同高,故面积之比等于边长之比,则故阴影部分的面积为12.【点睛】本题关键在于先证明三个三角形相似,得出对应边的关系,最后根据已知条件算出边长,得出阴影部分面积与已知三角形面积之比,故可得出阴影部分的面积.7、D【解析】试题分析:②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.点评:本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.8、C【分析】分别根据合并同类项的法则,积的乘方运算法则以及同底数幂的乘法法则逐一判断即可.【详解】解:2a与3b不是同类项,所以不能合并,故选项A不合题意;

a2与a3不是同类项,所以不能合并,故选项B不合题意;

(-2a3b2)3=-8a9b6,正确,故选项C符合题意;

a3•a2=a5,故选项D不合题意.

故选:C.【点睛】本题主要考查了合并同类项,幂的乘方与积的乘方及同底数幂的乘法,熟记幂的运算法则是解答本题的关键.9、C【分析】逐一进行判断即可.【详解】2a2+3a3不是同类项,不能合并,故选项A错误;a6÷a2=a4,故选项B错误;()3=,故选项C正确;(a﹣3)﹣2=a6,故选项D错误;故选:C.【点睛】本题主要考查合并同类项,同底数幂的除法,积的乘方和幂的乘方,掌握同底数幂的除法,积的乘方和幂的乘方运算法则是解题的关键.10、B【解析】设小李每小时走x千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x千米,依题意得:故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.11、D【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【详解】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2−b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.

故选:D.【点睛】本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.12、B【解析】试题解析:0.0000034米米.故选B.二、填空题(每题4分,共24分)13、【详解】解:由于直线过点A(0,2),P(1,m),则,解得,,故所求不等式组可化为:mx>(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x<2,14、【分析】先提取公因式,再利用公式法因式分解即可.【详解】.故答案为:.【点睛】本题考查因式分解的计算,关键在于熟练掌握基本的因式分解方法.15、方差【分析】设原数据的众数为a、中位数为b、平均数为、方差为S2,数据个数为n,根据数据中的每一个数都加上1,利用众数、中位数的定义,平均数、方差的公式分别求出新数据的众数、中位数、平均数、方差,与原数据比较即可得答案.【详解】设原数据的众数为a、中位数为b、平均数为、方差为S2,数据个数为n,∵将一组数据中的每一个数都加上1,∴新的数据的众数为a+1,中位数为b+1,平均数为(x1+x2+…+xn+n)=+1,方差=[(x1+1--1)2+(x2+1--1)2+…+(xn+1--1)2]=S2,∴值保持不变的是方差,故答案为:方差【点睛】本题考查的知识点众数、中位数、平均数、方差,熟练掌握方差和平均数的计算公式是解答本题的关键.16、1【分析】根据题中的新定义得出算式(x+1)(x-1)-3x(x-2),化简后把x2-3x的值代入计算即可求解.【详解】解:根据题意得:(x+1)(x-1)-3x(x-2)

=x2-1-3x2+6x

=-2x2+6x-1

=-2(x2-3x)-1,∵x2-3x+1=0,∴x2-3x=-1,原式=-2×(-1)-1=1.故答案为1.【点睛】本题考查整式的混合运算-化简求值,解题的关键是弄清题中的新定义.17、x>-1.【分析】根据一次函数的图象和两函数的交点横坐标即可得出答案.【详解】∵一次函数与一次函数的图像相交于点,交点横坐标为:x=-1,∴不等式的解集是x>-1.故答案为:x>-1.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了观察函数图象的能力.18、【分析】先根据平方根和立方根的概念,求出和的值,联立方程组即可求出x、y的值,代入即可求解本题.【详解】解:∵的平方根是±3,∴=9,①∵的立方根是2,∴=8,②②-①得:x=-1,将x=-1代入①式得:y=10,故;故答案为:.【点睛】本题考查的是平方根和立方根的概念,解决本题需要掌握平方根和立方根的概念,同时要掌握二元一次方程组的求解.三、解答题(共78分)19、①4(m+2n)(m﹣2n);②(x+3)2【分析】①原式提取4后,利用平方差分解因式即可得出答案;②原式整理后,利用完全平方公式分解即可得出答案.【详解】①解:4m2﹣16n2=4(m2﹣4n2)=4(m+2n)(m﹣2n)②解:(x+2)(x+4)+1=x2+6x+8+1=x2+6x+9=(x+3)2【点睛】本题考查了提取公因式法与公式法的综合运用,因式分解时,如果多项式的各项有公因式,首先考虑提取公因式,然后根据多项式的项数来选择方法继续因式分解,如果多项式是两项,则考虑用平方差公式;如果是三项,则考虑用完全平方公式,熟练掌握因式分解的方法是解题的关键.20、证明见解析.【分析】根据等边对等角可得∠B=∠C,再根据直角三角形两锐角互余和等角的余角相等可得∠F=∠2,再结合对顶角的定义∠F=∠1,最后根据等角对等边即可证明.【详解】解:∵AB=AC,

∴∠B=∠C,

∵FE⊥BC,

∴∠F+∠C=90°,∠2+∠B=90°,

∴∠F=∠2,

而∠2=∠1,

∴∠F=∠1,

∴AF=AD,

∴△ADF是等腰三角形;【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠1,即可推出结论.21、(1)图见解析;(2);(3)图见解析.【分析】(1)先根据轴对称的性质分别描出点,再顺次连接即可得;(2)根据点坐标关于y轴对称的变化规律即可得;(3)先根据轴对称的性质可得,再根据两点之间线段最短即可得.【详解】(1)先根据轴对称的性质分别描出点,再顺次连接即可得到,如图所示:(2)点坐标关于y轴对称的变化规律:横坐标变为相反数,纵坐标不变;(3)由轴对称的性质得:则由两点之间线段最短得:当三点共线时,取得最小值,最小值为如图,连接,与y轴的交点P即为所求.【点睛】本题考查了画轴对称图形、点坐标关于y轴对称的变化规律、两点之间线段最短,熟练掌握轴对称的性质是解题关键.22、(1);(2)【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解因式即可.【详解】解:(1)(2)【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23、(1)见解析;(2)A1(5,5)B1(3,3)C1(2,3),见解析;(3)见解析。P点坐标(,0)【解析】(1)根据平面直角坐标系中点的平移规律,解决即可.(2)根据关于y轴对称的图形的对应点的坐标特征,找出对应点A1,B1,C1连线即可.(3)最短路径问题,找到C1关于x轴对称的对应点C2,连接C1C2,与x轴的交点即为P点.【详解】解:(1)如图所示(2)如图所示A1(5,5)B1(3,3)C1(2,3)(3)如图所示∵C(-2,3),B2(3,-1),

∴直线CB2的解析式为y=-x+令y=0,解得x=∴P点坐标(,,0).【点睛】本题考查平面坐标系中点的坐标平移规律,关于y轴对称的对应点的坐标特征,即最短路径问题,解决本题的关键是熟练掌握坐标平移规律.24、(1)这个角的两边,角平分线上;(2)PE,平分线上;(3)见解析;(1)1【分析】(1)根据角平分线的性质定理和判定定理解答;

(2)根据题意结合图形写出已知;

(3)作射线OP,证明Rt△OPD≌Rt△OPE即可;

(1)根据角平分线的性质定理解答.【详解】解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论