版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省宁晋县数学八上期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,已知AB=AC,AF=AE,∠EAF=∠BAC,点C、D、E、F共线.则下列结论,其中正确的是()①△AFB≌△AEC;②BF=CE;③∠BFC=∠EAF;④AB=BC.A.①②③ B.①②④ C.①② D.①②③④2.在Rt△ABC中,以两直角边为边长的正方形面积如图所示,则AB的长为()A.49 B. C.3 D.73.如图,边长分别为和的两个正方形拼接在一起,则图中阴影部分的面积为()A. B. C. D.4.下列运算正确的是()A. B. C. D.5.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的高度是()A.10尺 B.11尺 C.12尺 D.13尺6.估计的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间7.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()A.B.C.D.8.下列各式不成立的是()A. B.C. D.9.全球芯片制造已经进入纳米到纳米器件的量产时代.中国自主研发的第一台纳米刻蚀机,是芯片制造和微观加工最核心的设备之一.华为手机搭载了全球首款纳米制程芯片,纳米就是米.数据用科学记数法表示为()A. B. C. D.10.如图,四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为(8,6),将沿OB翻折,A的对应点为E,OE交BC于点D,则D点的坐标为()A.(,6) B.(,6) C.(,6) D.(,6)二、填空题(每小题3分,共24分)11.若(x-1)x+1=1,则x=______.12.已知,x、y为实数,且y=﹣+3,则x+y=_____.13.用不等式表示x的3倍与5的和不大于10是____________________;14.如图,在中,,是的中点,,垂足为,,则的度数是______.15.如图,已知△ABC中,∠BAC=132°,现将△ABC进行折叠,使顶点B、C均与顶点A重合,则∠DAE的度数为____.16.计算:__________.17.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段18.分解因式:2a3﹣8a=________.三、解答题(共66分)19.(10分)解不等式组,并求出它的整数解的和.20.(6分)计算:(1)(x+2)(2x﹣1)(2)()221.(6分)在平面直角坐标系中,的位置如图所示,已知点的坐标是.(1)点的坐标为(,),点的坐标为(,);(2)的面积是;(3)作点关于轴的对称点,那么、两点之间的距离是.22.(8分)已知:如图,,点是的中点,平分,.(1)求证:;(2)若,试判断的形状,并说明理由.23.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的位置如图所示.(1)若△ABC内有一点P(a,b)随着△ABC平移后到了点P′(a+4,b﹣1),直接写出A点平移后对应点A′的坐标.(2)直接作出△ABC关于y轴对称的△A′B′C′(其中A′、B′、C′分别是A、B、C的对应点)(3)求四边形ABC′C的面积.24.(8分)我们提供如下定理:在直角三角形中,30°的锐角所对的直角边是斜边的一半,如图(1),Rt△ABC中,∠C=90°,∠A=30°,则BC=AB.请利用以上定理及有关知识,解决下列问题:如图(2),边长为6的等边三角形ABC中,点D从A出发,沿射线AB方向有A向B运动点F同时从C出发,以相同的速度沿着射线BC方向运动,过点D作DE⊥AC,DF交射线AC于点G.(1)当点D运动到AB的中点时,直接写出AE的长;(2)当DF⊥AB时,求AD的长及△BDF的面积;(3)小明通过测量发现,当点D在线段AB上时,EG的长始终等于AC的一半,他想当点D运动到图3的情况时,EG的长始终等于AC的一半吗?若改变,说明理由;若不变,说明理由.25.(10分)两位同学将一个二次三项式进行因式分解时,一名同学因为看错了一次项系数而分解成:,另一位同学因为看错了常数项而分解成了.请求出原多项式,并将它因式分解.26.(10分)如图,把一张长方形纸片ABCD沿EF折叠,点C与点A重合,点D落在点G处.若长方形的长BC为16,宽AB为8,求:(1)AE和DE的长;(2)求阴影部分的面积.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意结合图形证明△AFB≌△AEC;利用四点共圆及全等三角形的性质问题即可解决.【详解】如图,∵∠EAF=∠BAC,∴∠BAF=∠CAE;在△AFB与△AEC中,,∴△AFB≌△AEC(SAS),∴BF=CE;∠ABF=∠ACE,∴A、F、B、C四点共圆,∴∠BFC=∠BAC=∠EAF;故①、②、③正确,④错误.故选A..【点睛】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.2、D【分析】根据勾股定理可知:以斜边为边长的正方形的面积等于以两条直角边为边长的正方形的面积和,据此求解即可.【详解】解:∵以直角边为边长的两个正方形的面积为35和14,∴AB1=AC1+BC1=35+14=49,∴AB=7(负值舍去),故选:D.【点睛】本题考查勾股定理的实际应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.3、C【分析】根据三角形和矩形的面积公式,利用割补法,即可求解.【详解】由题意得:,,,,∴===.故选C.【点睛】本题主要考查求阴影部分图形的面积,掌握割补法求面积,是解题的关键.4、C【分析】根据合并同类项法则、同底数幂乘除法法则和幂的乘方法则逐项判断即可.【详解】解:A.,故错误;B.,故错误;C.,正确,D.,故错误;故选C.【点睛】本题考查了合并同类项,同底数幂乘除法以及幂的乘方,熟练掌握运算法则是解题关键.5、D【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【详解】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:,解得:x=12,所以芦苇的长度=x+1=12+1=13(尺),故选:D.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.6、B【分析】先根据二次根式的乘法法则得出的值,再估算即可【详解】解:∵∴故选:B【点睛】本题主要考查了二次根式的乘法和估算无理数的大小,掌握运算法则是解题的关键.7、B【分析】过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【详解】解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=三角形ABC的面积=cm1,选项中只有B的长方形面积为cm1,故选B.8、C【分析】根据二次根式的性质、二次根式的加法法则、除法法则计算,判断即可.【详解】,A选项成立,不符合题意;,B选项成立,不符合题意;,C选项不成立,符合题意;,D选项成立,不符合题意;故选C.【点睛】本题考查的是二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.9、B【分析】由题意根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、D【分析】根据翻折的性质及勾股定理进行计算即可得解.【详解】∵四边形OABC为长方形,点A在x轴上,点C在y轴上,B点坐标为∴OC=AB=6,BC=OA=8,,,BC//OA∴∵将沿OB翻折,A的对应点为E∴∴∴OD=BD设CD=x,则在中,∴解得:∴点D的坐标为,故选:D.【点睛】本题主要考查了翻折的性质,熟练掌握翻折及勾股定理的计算是解决本题的关键.二、填空题(每小题3分,共24分)11、2或-1【解析】当x+1=0,即x=-1时,原式=(-2)
0
=1;当x-1=1,x=2时,原式=1
3
=1;当x-1=-1时,x=0,(-1)
1
=-1,舍去.故答案为2或-1.12、2或2.【分析】直接利用二次根式有意义的条件求出x好y的值,然后代入x+y计算即可.【详解】解:由题意知,x2﹣2≥0且2﹣x2≥0,所以x=±2.所以y=3.所以x+y=2或2故答案是:2或2.【点睛】此题主要考查了二次根式有意义的条件以及平方根,正确得出x,y的值是解题关键.13、3x+5≤1【分析】直接利用x的3倍,即3x,与5的和,则3x+5,进而小于等于1得出答案.【详解】解:由题意可得:3x+5≤1.
故答案为:3x+5≤1.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确理解题意是解题关键.14、65【分析】首先根据三角形的三线合一的性质得到AD平分∠BAC,然后求得其一半的度数,从而求得答案.【详解】∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,∵∠BAC=50°,∴∠DAC=25°,∵DE⊥AC,∴∠ADE=90°−25°=65°,故答案为65°.【点睛】本题考查了等腰三角形的性质,解题的关键是了解等腰三角形三线合一的性质,难度不大.15、84°【分析】利用三角形的内角和定理可得∠B+∠C=48°,然后根据折叠的性质可得∠B=∠DAB,∠C=∠EAC,从而求出∠DAB+∠EAC=48°,即可求出∠DAE.【详解】解:∵∠BAC=132°,∴∠B+∠C=180°-∠BAC=48°由折叠的性质可得:∠B=∠DAB,∠C=∠EAC∴∠DAB+∠EAC=48°∴∠DAE=∠BAC-(∠DAB+∠EAC)=84°故答案为:84°.【点睛】此题考查的是三角形的内角和定理和折叠的性质,掌握三角形的内角和定理和折叠的性质是解决此题的关键.16、【解析】直接计算即可得解.【详解】解:原式===故答案为.【点睛】此题主要考查二次根式的混合运算,熟练掌握法则即可解题.17、13.【解析】∵CD沿CB平移7cm至EF∴EF//CD,CF=7∴BF=BC-CF=5,EF=CD=4,∠EFB=∠C∵AB=AC,∴∠B=∠C∴EB=EF=4∴C考点:平移的性质;等腰三角形的性质.18、2a(a+2)(a﹣2)【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,.三、解答题(共66分)19、1【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的整数解即可.【详解】解不等式得:,解不等式得:,此不等式组的解集为,故它的整数解为:-2,-1,0,1,2,1,它的整数解的和为1.【点睛】本题主要考查解一元一次不等式组及其整数解,注意各个不等式的解集的公共部分就是这个不等式组的解集.但本题是要求整数解,所以要找出在这范围内的整数.20、(1)2x2+3x﹣2;(2).【分析】(1)直接利用多项式乘法运算法则计算得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=2x2﹣x+4x﹣2=2x2+3x﹣2;(2)原式=3+2﹣2=5﹣2.【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题的关键.21、(1)3,0;-2,5;(2);(3)作点C关于y轴的对称点C'见解析;.【分析】(1)直接利用坐标系得出各点坐标即可;(2)利用梯形面积减去两个直角三角形的面积即可求得答案;(3)利用关于坐标轴对称点的性质及两点间的距离公式即可得出答案.【详解】(1)由图可得,,
故答案为:3,0;-2,5;(2)如图,=10;(3)如图,顶点C关于y轴对称的点C'为所作,点C'的坐标为(2,5),∴.【点睛】本题主要考查了关于坐标轴对称点的性质、三角形面积公式以及勾股定理的运用,正确得出对应点位置是解题关键.22、(1)见解析;(2)△ABC为等边三角形【分析】(1)根据三线合一定理,得AD⊥BD,由角平分线的性质定理,得BE=BD,即可得到,即可得到结论;(2)由BE∥AC,则∠EAC=∠E=90°,由角平分线的性质,得到∠EAB=∠BAD=∠CAD=30°,则∠BAC=60°,即可得到答案.【详解】(1)证明:如图,∵AB=AC,点D是BC中点∴AD⊥BD∵AB平分∠DAE,AE⊥BE∴BE=BD∴∴AD=AE;(2)解:△ABC为等边三角形∵BE∥AC∴∠EAC=∠E=90°∵AB=AC,AD是中线∴AD平分∠BAC∵AB平分∠DAE∴∠EAB=∠BAD=∠CAD=30°∴∠BAC=∠BAD+∠CAD=60°∵AB=AC∴△ABC是等边三角形.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质定理,解题的关键是熟练掌握所学的知识进行解题.23、(1)点A'(2,2);(2)详见解析;(3)5.5【分析】(1)根据平移的特点得出坐标即可;(2)根据轴对称的性质画出图形即可;(3)利用三角形的面积公式解答即可.【详解】解:(1)∵△ABC内有一点P(a,b)随着△ABC平移后到了点P′(a+4,b﹣1),点A(﹣2,3),∴点A'(2,2);(2)如图所示:(3)这里给到了网格图,所以直接补全所求面积为5×4的长方形,即可求得四边形ABC′C的面积=.【点睛】本题主要考查的是轴对称的变换以及相关的几何问题,这里需要注意得出正确的对应点,面积的计算借助网格图直接补全长方形即可求得最后答案.24、(1)AE=;(2)AD=2,S△BDF=8;(3)不变,理由见解析【分析】(1)根据D为AB的中点,求出AD的长,在Rt△ADE中,利用30°所对的直角边等于斜边的一半求出AE的长即可;(2)根据题意得到设AD=CF=x,表示出BD与BF,在Rt△BDF中,利用30°所对的直角边等于斜边的一半得到BF=2BD,列出关于x的方程,求出方程的解得到x的值,确定出BD与BF的长,利用勾股定理求出DF的长,即可确定出△BDF的面积;(3)不变,理由如下,如图,过F作FM⊥AG延长线于M,由AD=CF,且△ABC为等边三角形,利用等边三角形的性质及锐角三角函数定义得到DE=FM,以及AE=CM,利用AAS得到△DEG与△FMC全等,利用全等三角形对应边相等得到EG=MG,根据AC=AE+EC,等量代换即可得证.【详解】解:(1)当D为AB中点时,AD=BD=AB=3,在Rt△ADE中,∠A=60°,∴∠ADE=30°,∴AE=AD=;(2)设AD=x,∴CF=x,则BD=6-x,BF=6+x,∵∠B=60°,∠BDF=90°,∴∠F=30°,即BF=2BD,∴6+x=2×(6-x),解得:x=2,即AD=2,∴BD=4,BF=8,根据勾股定理得:DF=4,∴S△BDF=×4×4=8;(3)不变,理由如下,如图,过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《陋室铭》教案设计
- 体育地产物业竞标授权委托书
- 苏教版五年级语文下册教案
- 石油化工设备招投标文件样本
- 山东创新创业基地建设合同
- 物理研究人防设备安装合同
- 七台河市公园公共安全事件处理
- 水上婚礼婚礼演艺游艇租赁合同
- 工业园区配电房施工协议
- 机场航站楼大理石施工合同
- 临时用工安全安全教育
- DB32-T 2888.1-2016江苏省国家教育考试标准化考点建设技术标准 第1部分-总则-(高清现行)
- GB∕T 33217-2016 冲压件毛刺高度
- 贷款客户信息登记表
- 河南科学技术出版社小学信息技术三年级上册教案
- 最新培训机构学员报名表模板
- 07FK02防空地下室通风设备安装PDF高清图集
- Q∕SY 08124.21-2017 石油企业现场安全检查规范 第21部分:地下储气库站场
- 三甲医院(三级甲等)建设标准新
- 危险源辨识与风险评价全流程讲解
- 2022年企业负责人及安全管理人员培训课件
评论
0/150
提交评论