上海外国语大秀洲外国语学校2025届数学八上期末达标测试试题含解析_第1页
上海外国语大秀洲外国语学校2025届数学八上期末达标测试试题含解析_第2页
上海外国语大秀洲外国语学校2025届数学八上期末达标测试试题含解析_第3页
上海外国语大秀洲外国语学校2025届数学八上期末达标测试试题含解析_第4页
上海外国语大秀洲外国语学校2025届数学八上期末达标测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海外国语大秀洲外国语学校2025届数学八上期末达标测试试题题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下图中为轴对称图形的是().A. B. C. D.2.函数的自变量x的取值范围是()A. B.C.且 D.或3.如图,已知,则数轴上点所表示的数为()A. B. C. D.4.已知等腰三角形的一边长为5,另一边长为10,则这个等腰三角形的周长为()A.25 B.25或20 C.20 D.155.分式有意义,则的取值范围是()A. B. C. D.6.已知图中的两个三角形全等,则∠1等于()A.72° B.60° C.50° D.58°7.如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A. B. C. D.8.下列计算正确的是()A.a3·a4=a12 B.(a3)2=a5C.(-3a2)3=-9a6 D.(-a2)3=-a69.我国的纸伞工艺十分巧妙,如图,伞圈D能沿着伞柄滑动,伞不论张开还是缩拢,伞柄AP始终平分同一平面内所成的角∠BAC,为了证明这个结论,我们的依据是A.SAS B.SSS C.AAS D.ASA10.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=110°,则∠EAF为()A.35° B.40° C.45 D.50°11.若3x=15,3y=5,则3x-y等于()A.5 B.3 C.15 D.1012.如图,在中,,,的垂直平分线交于点,则的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知△ABC中,∠ABC的平分线与∠ACE的平分线交于点D,若∠A=50°,则∠D=______度.14.已知△ABC为等边三角形,BD为△ABC的高,延长BC至E,使CE=CD=1,连接DE,则BE=___________,∠BDE=_________.15.如图,在中,的垂直平分线交于点,且,若,则__________.16.如图,等边△ABC的周长为18cm,BD为AC边上的中线,动点P,Q分别在线段BC,BD上运动,连接CQ,PQ,当BP长为_____cm时,线段CQ+PQ的和为最小.17.已知,,则的值为__________.18.如图,边长为的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为三、解答题(共78分)19.(8分)(1)﹣(﹣1)2017+﹣|1﹣|(2)如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,求点C坐标.20.(8分)如图,在平面直角坐标系中,等腰直角△ABC,AB⊥BC,AB=BC,点C在第一象限.已知点A(m,0),B(0,n)(n>m>0),点P在线段OB上,且OP=OA.(1)点C的坐标为(用含m,n的式子表示)(2)求证:CP⊥AP.21.(8分)甲、乙两个工程队完成某项工程,首先是甲队单独做了10天,然后乙队加入合作,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系.(1)求甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式;(2)求实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少多少天?22.(10分)计算题(1)(2)23.(10分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10斤A级别和20斤B级别茶叶的利润为4000元,销售20斤A级别和10斤B级别茶叶的利润为3500元(1)分别求出每斤A级别茶叶和每斤B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200斤用于出口.设购买A级别茶叶a斤(70≤a≤120),销售完A、B两种级别茶叶后获利w元.①求出w与a之间的函数关系式;②该经销商购进A、B两种级别茶叶各多少斤时,才能获取最大的利润,最大利润是多少?24.(10分)如图,等腰三角形ABC中,AB=AC=4,∠BAC=100°,点D是底边BC的动点(点D不与B、C重合),连接AD,作∠ADE=40°,DE与AC交于点E.(1)当DC等于多少时,△ABD与△DCE全等?请说明理由;(2)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求出∠BDA的度数;若不可以,请说明理由.25.(12分)已知:如图,点是正比例函数与反比例函数的图象在第一象限的交点,轴,垂足为点,的面积是2.(1)求的值以及这两个函数的解析式;(2)若点在轴上,且是以为腰的等腰三角形,求点的坐标.26.某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费.如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨,y与x间的函数关系式.(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨.

参考答案一、选择题(每题4分,共48分)1、D【分析】根据轴对称图形的定义可得.【详解】根据轴对称图形定义可得ABC选项均不是轴对称图形,D选项为轴对称图形.【点睛】轴对称图形沿对称轴折叠,左右两边能够完全重合.2、A【详解】要使函数有意义,则所以,故选A.考点:函数自变量的取值范围.3、D【分析】根据勾股定理求出AB的长,即为AC的长,再根据数轴上的点的表示解答.【详解】由勾股定理得,∴∵点A表示的数是1∴点C表示的数是故选D.【点睛】本题考查了勾股定理、实数与数轴,熟记定理并求出AB的长是解题的关键.4、A【分析】题目给出等腰三角形有两条边长为5和10,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:

当腰为5时,5+5=10,所以不能构成三角形;

当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=1.

故选:A.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.5、A【解析】本题主要考查分式有意义的条件:分母不能为0,分式有意义.【详解】分式有意义,则x+1≠0,即.故选:A【点睛】考核知识点:分式有意义的条件.理解定义是关键.6、D【分析】相等的边所对的角是对应角,根据全等三角形对应角相等可得答案.【详解】左边三角形中b所对的角=180°-50°-72°=58°,∵相等的边所对的角是对应角,全等三角形对应角相等∴∠1=58°故选D.【点睛】本题考查全等三角形的性质,找准对应角是解题的关键.7、A【解析】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出△ABC是直角三角形,最后设BC边上的高为h,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:,,,,即∴△ABC是直角三角形,设BC边上的高为h,则,∴.故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.8、D【分析】根据同底数幂的乘法、幂的乘方、积的乘方等知识分别计算得出答案.【详解】A.a3·a4=a7,计算错误,不合题意;B.(a3)2=a6,计算错误,不合题意;C.(-3a2)3=-27a6,计算错误,不合题意;D.(-a2)3=-a6,计算正确,符合题意.故选:D.【点睛】此题主要考查了同底数幂的乘法、幂的乘方、积的乘方等知识,正确掌握相关运算法则是解题关键.9、B【分析】根据确定三角形全等的条件进行判定即可得解.【详解】解:根据伞的结构,AE=AF,伞骨DE=DF,AD是公共边,

∵在△ADE和△ADF中,∴△ADE≌△ADF(SSS),

∴∠DAE=∠DAF,

即AP平分∠BAC.

故选B.【点睛】本题考查了全等三角形的应用,理解题意确定出全等的三角形以及全等的条件是解题的关键.10、B【解析】试题分析:根据三角形内角和定理求出∠C+∠B=70°,根据线段垂直平分线的性质得到EC=EA,FB=FA,根据等腰三角形的性质得到∠EAC=∠C,∠FAB=∠B,计算即可.解:∵∠BAC=110°,∴∠C+∠B=70°,∵EG、FH分别为AC、AB的垂直平分线,∴EC=EA,FB=FA,∴∠EAC=∠C,∠FAB=∠B,∴∠EAC+∠FAB=70°,∴∠EAF=40°,故选B.考点:线段垂直平分线的性质.11、B【解析】试题分析:3x-y=3x÷3y=15÷5=3;故选B.考点:同底数幂的除法.12、A【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A=∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【详解】解:∵AB=AC,∠A=30°,

∴∠ABC=∠ACB=75°,

∵AB的垂直平分线交AC于D,

∴AD=BD,

∴∠A=∠ABD=30°,

∴∠BDC=60°,

∴∠CBD=180°-75°-60°=45°.

故选:A.【点睛】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°-30°更简单些.二、填空题(每题4分,共24分)13、25【详解】根据三角形的外角的性质可得∠ACE=∠ABC+∠A,∠DCE=∠DBC+∠D,又因为BD,CD是∠ABC的平分线与∠ACE的平分线,所以∠ACE=2∠DCE,∠ABC=2∠DBC,所以∠D=∠DCE-∠DBC=(∠ACE-∠ABC)=∠A=25°.14、1120°【分析】根据等腰三角形和10度角所对直角边等于斜边的一半,得到BC的长,进而得到BE的长,根据三角形外角性质求出∠E=∠CDE=10°,进而得出∠BDE的度数.【详解】∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC.∵BD为高线,∴∠BDC=90°,∠DBC∠ABC=10°,∴BC=2DC=2,∴BE=BC+CE=2+1=1.∵CD=CE,∴∠E=∠CDE.∵∠E+∠CDE=∠ACB=60°,∴∠E=∠CDE=10°,∴∠BDE=∠BDC+∠CDE=120°.故答案为:1,120°.【点睛】本题考查了等边三角形性质,含10度角的直角三角形的性质,等腰三角形性质,三角形的外角性质等知识点的应用,关键是求出BD的长.15、35°【分析】根据等腰三角形的性质算出∠BAD,再由垂直平分线的性质得出△ADC为等腰三角形,则有∠C=∠DAC从而算出∠C.【详解】解:∵,∠B=40°,∴∠BAD=∠BDA=(180°-40°)×=70°,∵的垂直平分线交于点,∴∠DAC=∠C,∴∠C==35°.故答案为:35°.【点睛】本题考查了等腰三角形的性质和垂直平分线的性质,以及三角形内角和定理,解题的关键是善于发现图中的等腰三角形,利用等边对等角得出结果.16、1.【分析】连接AQ,依据等边三角形的性质,即可得到CQ=AQ,依据当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,即可得到BP的长.【详解】如图,连接AQ,∵等边△ABC中,BD为AC边上的中线,∴BD垂直平分AC,∴CQ=AQ,∴CQ+PQ=AQ+PQ,∴当A,Q,P三点共线,且AP⊥BC时,AQ+PQ的最小值为线段AP的长,此时,P为BC的中点,又∵等边△ABC的周长为18cm,∴BP=BC=×6=1cm,故答案为1.【点睛】本题主要考查了最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.17、1【分析】直接利用同底数幂的乘除运算法则将原式变形进而得出答案.【详解】:∵2a=18,2b=3,∴2a-2b+1=2a÷(2b)2×2=18÷32×2=1.故答案为:1.【点睛】此题主要考查了同底数幂的乘除运算,解题关键是将原式进行正确变形.18、【详解】因为大正方形边长为,小正方形边长为m,所以剩余的两个直角梯形的上底为m,下底为,所以矩形的另一边为梯形上、下底的和:+m=.三、解答题(共78分)19、(1)1﹣;(2)C坐标为(﹣1,0)【分析】(1)根据实数的混合运算法则计算;(2)根据勾股定理求出AB,根据坐标与图形性质解答.【详解】解:(1)﹣(﹣1)2017+﹣==1﹣;(2)由勾股定理得,AB===5,则OC=AC﹣OA=1,则点C坐标为(﹣1,0).【点睛】本题考查的是实数的混合运算、勾股定理,掌握实数的混合运算法则、勾股定理是解题的关键.20、(1)(n,m+n);(2)详见解析.【分析】(1)过点C作CD⊥y轴于点D,由“AAS”可证△CDB≌△BOA,可得BO=CD=n,AO=BD=m,即可求解;(2)由线段的和差关系可得DP=n=DC,可得∠DPC=45°,可得结论.【详解】(1)如图,过点C作CD⊥y轴于点D,∴∠CDB=90°,∴∠DCB+∠DBC=90°,且∠ABO+∠CBD=90°,∴∠DCB=∠ABO,且AB=BC,∠CDB=∠AOB=90°,∴△CDB≌△BOA(AAS)∴BO=CD=n,AO=BD=m,∴OD=m+n,∴点C(n,m+n),故答案为:(n,m+n);(2)∵OP=OA=m,OD=m+n,∴DP=n=DC,∠OPA=45°,∴∠DPC=45°,∴∠APC=90°,∴AP⊥PC.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,证明△CDB≌△BOA是本题的关键.21、(1)y=x-;(2)实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天【分析】(1)根据函数图象可以设出y与x的函数解析式,然后根据图象中的数据即可求得工作量y与天数x间的函数关系式;(2)将y=1代入(1)中的函数解析式,即可求得实际完成的天数,然后根据函数图象可以求得甲单独完成需要的天数,从而可以解答本题.【详解】(1)设甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式为:y=kx+b,,得,即甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式是y=x-;(2)令y=1,则1=x-,得x=22,甲队单独完成这项工程需要的天数为:1÷(÷10)=40(天),∵40-22=18,∴实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.22、(1)11;(2)【分析】(1)原式利用完全平方公式展开,合并即可得到答案;(2)原式利用多项式除以单项式法则计算即可得到结果.【详解】(1)(2)原式【点睛】本题主要考查了二次根式的混合运算,正确化简二次根式是解题的关键.23、(1)一斤A级别的茶叶的销售利润为100元,一斤B级别茶叶的销售利润为150元;(2)①w=-50a+1;②购买A级别茶叶70斤,购买B级别茶叶2斤时,才能获取最大的利润,最大利润是26500元.【分析】(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;

(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.【详解】解:(1)设一斤A级别的茶叶的销售利润为x元,一斤B级别茶叶的销售利润为y元由题意得:解得:答:一斤A级别的茶叶的销售利润为100元,一斤B级别茶叶的销售利润为150元.(2)①由题意得,w=100a+150(200-a)=-50a+1.②∵-50<0∴w的值随a值的增大而减小∵70≤a≤120,∴当a=70时,w取得最大值,此时w=26500,200-70=2.所以,购买A级别茶叶70斤,购买B级别茶叶2斤时,才能获取最大的利润,最大利润是26500元.【点睛】本题考查一次函数的应用、二元一次方程组、不等式等知识,解题的关键是理解题意,学会利用参数构建一次函数或方程解决问题.24、(1)当DC=4时,△ABD≌△DCE,理由详见解析;(2)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.【分析】(1)当DC=4时,利用∠DEC+∠EDC=140,∠ADB+∠EDC=140,得到∠ADB=∠DEC,根据AB=DC=4,证明△ABD≌△DCE;(2)分DA=DE、AE=AD、EA=ED三种情况,根据等腰三角形的性质、三角形内角和定理计算.【详解】解:(1)当DC=4时,△ABD≌△DCE,理由:∵AB=AC=4,∠BAC=100,∴∠B=∠C=40,∴∠DEC+∠EDC=140,∵∠ADE=40,∴∠ADB+∠EDC=140,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(2)当∠BDA的度数为110或80时,△ADE的形状是等腰三角形,当DA=DE时,∠DAE=∠DEA=70,∴∠BDA=∠DAE+∠C=70+40=110;当AD=AE时,∠AED=∠ADE=40,∴∠DAE=100,此时,点D与点B重合,不合题意;当EA=ED时,∠EAD=∠ADE=40,∴∠AED=100,∴∠EDC=∠AED﹣∠C=60,∴∠BDA=180﹣40﹣60=80综上所述,当∠BDA的度数为110或80时,△ADE的形状是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论