




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省南京溧水区八年级数学第一学期期末监测模拟试题题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列因式分解正确的是()A.4-x²+3x=(2-x)(2+x)+3xB.-x²-3x+4=(x+4)(x-1)C.1-4x+4x²=(1-2x)²D.x²y-xy+x3y=x(xy-y+x²y)2.把分式方程转化为一元一次方程时,方程两边需同乘以()A.x B.2x C.x+4 D.x(x+4)3.如图,已知∠1=∠2,AC=AD,增加下列条件:其中不能使△ABC≌△AED的条件()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E4.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°5.如图,在△ABC,∠C=90°,AD平分∠BAC交CB于点D,过点D作DE⊥AB,垂足恰好是边AB的中点E,若AD=3cm,则BE的长为()A.cm B.4cm C.3cm D.6cm6.下列运算正确的是A. B. C. D.7.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角8.如图,在中,,将在平面内绕点旋转到的位置,使,则旋转角的度数为()A. B. C. D.9.下列命题:①同旁内角互补,两直线平行;②若,则;③对角线互相垂直平分的四边形是正方形;④对顶角相等.其中逆命题是真命题的有()A.1个 B.2个 C.3个 D.4个10.若等腰三角形的两边长分别为5和11,则这个等腰三角形的周长为()A.21 B.22或27 C.27 D.21或2711.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有()A.4个 B.3个 C.2个 D.1个12.在下列各数中,无理数有()A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.使分式有意义的x的范围是________
。14.若实数m,n满足,则=_______.15.分式有意义的条件是__________.16.对于实数a,b,定义运算“※”:a※b=,例如3※1,因为3<1.所以3※1=3×1=2.若x,y满足方程组,则x※y=_____.17.若直角三角形斜边上的高和中线长分别是5cm,8cm,则它的面积是_____cm1.18.、、的公分母是___________.三、解答题(共78分)19.(8分)先化简,再求值:(2x+1)(2x−1)−(x+1)(3x−2),其中x=−1.20.(8分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB=6,OC=1.点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线与y轴平行,直线交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线恰好过点C.(1)求点A和点B的坐标;(2)当0<t<3时,求m关于t的函数关系式;(3)当m=3.1时,请直接写出点P的坐标.21.(8分)某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并求出x的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.22.(10分)如图,在Rt△ABC中,(M2,N2),∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB;(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.23.(10分)如图1,点为正方形的边上一点,,且,连接,过点作垂直于的延长线于点.(1)求的度数;(2)如图2,连接交于,交于,试证明:.24.(10分)化简:.25.(12分)小明的家离学校1600米,一天小明从家出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上他,已知爸爸的速度是小明速度的2倍,求小明的速度.26.(1)计算:;(2)先化简,,再选择一个你喜欢的x代入求值.
参考答案一、选择题(每题4分,共48分)1、C【解析】A.中最后结果不是乘积的形式,所以不正确;B.-x²-3x+4=(x+4)(1-x),故B错误;C.1-4x+4x²=(1-2x)²,故C正确;D.x²y-xy+x3y=xy(x-1+x²),故D错误.故选:C.2、D【分析】根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程.【详解】解:方程两边同乘x(x+4),得2x=1故选D.3、B【解析】∵∠1=∠2,
∴∠1+∠EAB=∠2+∠EAB,
∴∠CAB=∠DAE,
A、添加AB=AE可利用SAS定理判定△ABC≌△AED,故此选项符合题意;
B、添加CB=DE不能判定△ABC≌△AED,故此选项符合题意;
C、添加∠C=∠D可利用ASA定理判定△ABC≌△AED,故此选项符合题意;
D、添加∠B=∠E可利用AAS定理判定△ABC≌△AED,故此选项符合题意;
故选B.【点睛】判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、C【详解】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】本题考查平行线的判定,难度不大.5、A【分析】先根据角平分线的性质可证CD=DE,从而根据“HL”证明Rt△ACD≌Rt△AED,由DE为AB中线且DE⊥AB,可求AD=BD=3cm,然后在Rt△BDE中,根据直角三角形的性质即可求出BE的长.【详解】∵AD平分∠BAC且∠C=90°,DE⊥AB,∴CD=DE,由AD=AD,所以,Rt△ACD≌Rt△AED,所以,AC=AE.∵E为AB中点,∴AC=AE=AB,所以,∠B=30°.∵DE为AB中线且DE⊥AB,∴AD=BD=3cm,∴DE=BD=,∴BE=cm.故选A.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.6、A【解析】选项A,选项B,,错误;选项C,,错误;选项D,,错误.故选A.7、B【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】考查了反证法,解此题关键要懂得反证法的意义及步骤在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.8、D【分析】根据旋转的性质得出,利用全等三角形的性质和平行线的性质得出,即可得出答案.【详解】根据题意可得∴又∴∴∴故答案选择D.【点睛】本题考查的是旋转和全等,难度适中,解题关键是根据图示找出旋转角.9、B【分析】首先写出各个命题的逆命题,然后进行判断即可.【详解】解:①同旁内角互补,两直线平行,其逆命题:两直线平行,同旁内角互补是真命题;
②若,则,其逆命题:若,则是假命题;③对角线互相垂直平分的四边形是正方形,其逆命题:正方形的对角线互相垂直平分是真命题;
④对顶角相等,其逆命题:相等的角是对顶角是假命题;
故选:B.【点睛】本题考查了命题与定理,判断一件事情的语句,叫做命题,也考查了逆命题.10、C【分析】分两种情况分析:当腰取5,则底边为11;当腰取11,则底边为5;根据三角形三边关系分析.【详解】当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
当腰取11,则底边为5,则三角形的周长=11+11+5=1.
故选C.【点睛】考核知识点:等腰三角形定义.理解等腰三角形定义和三角形三边关系是关键.11、B【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选B.【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.12、B【分析】先将能化简的进行化简,再根据无理数的定义进行解答即可.【详解】∵,,∴这一组数中的无理数有:3π,共2个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.二、填空题(每题4分,共24分)13、x≠1【分析】根据分式有意义的条件可求解.【详解】分母不为零,即x-1≠0,x≠1.故答案是:x≠1.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14、【分析】根据,可以求得m、n的值,从而可以求得的值.【详解】∵,∴m-2=0,n-2019=0,解得,m=2,n=2019,∴,故答案为:.【点睛】本题考查非负数的性质、负指数幂和零指数幂,解答本题的关键是明确题意,利用非负数的性质求出m和n的值.15、【分析】根据分式的性质即可求出.【详解】∵是分式,∴∴【点睛】此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.16、13【分析】求出方程组的解得到x与y的值,代入原式利用题中的新定义计算即可.【详解】解:方程组,①+②×1得:9x=108,解得:x=2,把x=2代入②得:y=5,则x※y=2※5==13,故答案为13【点睛】本题考查了解一元二次方程组,利用了消元的思想,消元的方法有:代入消元与加减消元法.17、40【分析】三角形面积=斜边.【详解】直角三角形斜边上的中线等于斜边的一半,三角形面积=斜边=5=40.【点睛】掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.18、12x3y-12x2y2【解析】根据确定最简公分母的方法进行解答即可.【详解】系数的最小公倍数是12;x的最高次数是2;y与(x-y)的最高次数是1;所以最简公分母是12x2y(x-y).
故答案为12x2y(x-y).【点睛】此题考查了最简公分母的取法,确定最简公分母的方法有三步,分别为:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,三步得到的因式的积即为最简公分母.三、解答题(共78分)19、(1);3【分析】利用平方差公式以及多项式乘多项式展开后,再合并同类项,代入x=−1即可求解.【详解】,当时,原式.【点睛】本题主要考查了整式的混合运算,关键是掌握整式乘法的计算法则,正确把式子化简.20、(1)(3,3),(6,0)(2)(0<t<3)(3)P(,0)或(,0)【分析】(1)根据等腰直角三角形的性质即可解决问题;(2)作CN⊥x轴于N,如图,先利用勾股定理计算出CN得到C点坐标为(4,-3),再利用待定系数法分别求出直线OC的解析式,直线OA的解析式,则根据一次函数图象上点的坐标特征得到Q、R的坐标,从而得到m关于t的函数关系式;(3)利用待定系数法求出直线AB的解析式,直线BC的解析式,然后分类讨论:当0<t<3,3≤t<4,当4≤t<6时,分别列出方程,然后解方程求出t得到P点坐标.【详解】(1)由题意△OAB是等腰直角三角形,过点A作AM⊥OB于M,如图:
∵OB=6,∴AM=OM=MB=OB=3,
∴点A的坐标为(3,3),点B的坐标为(6,0);(2)作CN⊥轴于N,如图,
∵时,直线恰好过点C,
∴ON=4,
在Rt△OCN中,CN=,∴C点坐标为(4,-3),
设直线OC的解析式为,
把C(4,-3)代入得,解得,∴直线OC的解析式为,设直线OA的解析式为,
把A(3,3)代入得,解得,
∴直线OA的解析式为,
∵P(t,0)(0<t<3),
∴Q(,),R(,),∴QR=,即();(3)设直线AB的解析式为,
把A(3,3),B(6,0)代入得:,解得,
∴直线AB的解析式为,
同理可得直线BC的解析式为,
当0<t<3时,,若,则,解得,此时P点坐标为(2,0);当3≤t<4时,Q(,),R(,),∴,若,则,解得(不合题意舍去);当4≤t<6时,Q(,),R(,),∴,若,则,解得,此时P点坐标为(,0);综上所述,满足条件的P点坐标为(2,0)或(,0).【点睛】本题考查了一次函数与几何的综合题:熟练掌握等腰直角三角形的性质和一次函数图象上点的坐标特征;会运用待定系数法求一次函数解析式;理解坐标与图形性质,会利用点的坐标表示线段的长;学会运用分类讨论的思想解决数学问题.21、(1)15≤x<40且x为整数;(2)若要使租车总费用不超过25200元,一共有6种方案,当租用A型号客车15辆,B型号客车25辆时最省钱,此时租车总费用为24700元。【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;
(2)列出不等式组,求出自变量x的取值范围,利用函数的性质即可解决问题;【详解】解:(1)y=680x+580(40-x)=100x+23200由53x+45(40-x)≥1920解得x≥15,∵x<40且x为整数,∴15≤x<40且x为整数(2)由题意得:100x+23200≤25200,解得x≤20,由(1)15≤x<40且x为整数∴15≤x≤20且x为整数,故有6种方案∵100>0,∴y随x的增大而增大,∴当x=15时,y最小值=100×15+23200=24700(元)答:若要使租车总费用不超过25200元,一共有6种方案,当租用A型号客车15辆,B型号客车25辆时最省钱,此时租车总费用为24700元.【点睛】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.22、(1)证明见解析;(2)BH+EH的最小值为1.【解析】(1)只要证明△DEB是等边三角形,再根据SAS即可证明;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H.则点H即为符合条件的点.【详解】(1)在Rt△ABC中,∠BAC=10°,E为AB边的中点,∴BC=EA,∠ABC=60°,∵△DEB为等边三角形,∴DB=DE,∠DEB=∠DBE=60°,∴∠DEA=120°,∠DBC=120°,∴∠DEA=∠DBC,∴△ADE≌△CDB;(2)如图,作点E关于直线AC点E',连接BE'交AC于点H,则点H即为符合条件的点,由作图可知:EH=HE',AE'=AE,∠E'AC=∠BAC=10°,∴∠EAE'=60°,∴△EAE'为等边三角形,∴EE'=EA=AB,∴∠AE'B=90°,在Rt△ABC中,∠BAC=10°,BC=,∴AB=2,AE'=AE=,∴BE'==1,∴BH+EH的最小值为1.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,轴对称中的最短路径问题、勾股定理等,熟练掌握相关的性质与判定定理、利用轴对称添加辅助线确定最短路径问题是解题的关键.23、(1)∠EAF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 渤海石油职业学院《政府财务报告审计》2023-2024学年第二学期期末试卷
- 博尔塔拉职业技术学院《合唱三》2023-2024学年第二学期期末试卷
- 滨州学院《短视频创作与运营》2023-2024学年第二学期期末试卷
- 毕节医学高等专科学校《幼儿园家长工作指导》2023-2024学年第二学期期末试卷
- 北京语言大学《艺术生涯与发展规划》2023-2024学年第二学期期末试卷
- 北京邮电大学《人力资源管理专业英语》2023-2024学年第二学期期末试卷
- 基于沟道应变工程的CMOS薄膜工艺优化研究及器件性能提升实证
- 北京青年政治学院《生物医学》2023-2024学年第二学期期末试卷
- 北京劳动保障职业学院《波谱解析》2023-2024学年第二学期期末试卷
- 2025年不良资产处置市场格局演变与创新策略研究报告
- (2012)149号文造价咨询费计算表
- 思想道德与法治(湖南师范大学)智慧树知到课后章节答案2023年下湖南师范大学
- 房屋卫生间闭水实验情况确认单
- 《温病学》习题集-简答题+论述题
- 世界老年人跌倒的预防和管理指南解读及跌倒应急处理-
- 越南社会主义共和国刑法
- 井下煤矿掘进工作面爆破设计方案
- 东方广场招商执行方案
- 药物分析与检验技术中职PPT完整全套教学课件
- 实习考勤表(完整版)
- 五下册八单元解读
评论
0/150
提交评论