版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届汉中市重点中学数学八上期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.①实数和数轴上的点一一对应.②不带根号的数一定是有理数.③一个数的立方根是它本身,这样的数有两个.④的算术平方根是1.其中真命题有()A.1个 B.2个 C.3个 D.4个2.以下四家银行的行标图中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个3.“高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是()A. B. C. D.4.通过“第十四章整式的乘法与因式分解”的学习,我们知道:可以利用图形中面积的等量关系得到某些数学公式,如图,可以利用此图得到的数学公式是()A. B.C. D.5.如图,中的周长为.把的边对折,使顶点和点重合,折痕交于,交于,连接,若,则的周长为__________;A.. B.. C.. D..6.某射击运动员练习射击,5次成绩分别是:8、9、7、8、(单位:环),下列说法中正确的个数是()①若这5次成绩的平均数是8,则;②若这5次成绩的中位数为8,则;③若这5次成绩的众数为8,则;④若这5次成绩的方差为8,则A.1个 B.2个 C.3个 D.4个7.已知一个多边形的内角和等于900º,则这个多边形是()A.五边形 B.六边形 C.七边形 D.八边形8.在下图所示的几何图形中,是轴对称图形且对称轴最多的图形的是()A. B. C. D.9.如图钢架中,∠A=a,焊上等长的钢条P1P2,P2P3,P3P4,P4P5来加固钢架,若P1A=P1P2,∠P5P4B=95°,则a等于()A.18° B.23.75° C.19° D.22.5°10.如图,已知△ABC,AB=5,∠ABC=60°,D为BC边上的点,AD=AC,BD=2,则DC=()A.0.5 B.1 C.1.5 D.211.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm12.下列能作为多边形内角和的是()A. B. C. D.二、填空题(每题4分,共24分)13.点与点关于_________对称.(填“轴”或“轴”)14.已知是方程组的解,则5a﹣b的值是_____.15.长方形相邻边长分别为,,则它的周长是_______,面积是_______.16.设三角形三边之长分别为2,9,,则的取值范围为______.17.计算:,则__________.18.的平方根是____.三、解答题(共78分)19.(8分)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若,点在、内部,,,求的度数.(2)如图2,在AB∥CD的前提下,将点移到、外部,则、、之间有何数量关系?请证明你的结论.(3)如图3,写出、、、之间的数量关系?(不需证明)(4)如图4,求出的度数.20.(8分)已知直线:与轴交于点,直线:与轴交于点,且直线与直线相交所形成的的角中,其中一个角的度数是75°,则线段长为__.21.(8分)我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如(1),与都是等腰三角形,其中,则△ABD≌△ACE(SAS).(1)熟悉模型:如(2),已知与都是等腰三角形,AB=AC,AD=AE,且,求证:;(2)运用模型:如(3),为等边内一点,且,求的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以为边构造等边,这样就有两个等边三角形共顶点,然后连结,通过转化的思想求出了的度数,则的度数为度;(3)深化模型:如(4),在四边形中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,求的长.22.(10分)如图,AB∥EF,AD平分∠BAC,且∠C=45°,∠CDE=125°,求∠ADF的度数.23.(10分)先化简:,然后在-3,-1,1,3中选择一个合适的数,作为的值代入求值.24.(10分)如图,在平面直角坐标系中,的顶点,,均在正方形网格的格点上.(1)画出关于x轴的对称图形;(2)将,沿轴方向向左平移3个单位、再沿轴向下平移1个单位后得到,写出,,顶点的坐标.25.(12分)谁更合理?某种牙膏上部圆的直径为2.6cm,下部底边的长为4cm,如图,现要制作长方体的牙膏盒,牙膏盒底面是正方形,在手工课上,小明、小亮、小丽、小芳制作的牙膏盒的高度都一样,且高度符合要求.不同的是底面正方形的边长,他们制作的边长如下表:制作者小明小亮小丽小芳正方形的边长2cm2.6cm3cm3.4cm(1)这4位同学制作的盒子都能装下这种牙膏吗?()(2)若你是牙膏厂的厂长,从节约材料又方便取放牙膏的角度来看,你认为谁的制作更合理?并说明理由.26.某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下:甲1061068乙79789经过计算,甲进球的平均数为8,方差为3.2.(1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?
参考答案一、选择题(每题4分,共48分)1、A【分析】根据数轴的性质与实数的性质及二次根式的性质依次判断即可.【详解】实数和数轴上的点一一对应,①是真命题;不带根号的数不一定是有理数,例如π是无理数,②是假命题;一个数的立方根是它本身,这样的数有±1,0,共3个,③是假命题;的算术平方根是3,④是假命题;综上所述,只有一个真命题,故选:A.【点睛】本题主要考查了命题真假的判断,熟练掌握各章节的相关概念是解题关键.2、C【解析】试题分析:根据轴对称图形的定义可知:第1个行标是轴对称图形;第2个行标不是轴对称图形;第3个行标是轴对称图形;第4个行标是轴对称图形;所以共3个轴对称图形,故选C.考点:轴对称图形3、D【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.【详解】解:根据轴对称图形的定义,只有D选项图形是轴对称图形.故选:D【点睛】本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.4、B【分析】根据图形,左上角正方形的面积等于大正方形的面积减去两个矩形的面积,然后加上多减去的右下角的小正方形的面积.【详解】∵左上角正方形的面积,
左上角正方形的面积,还可以表示为,
∴利用此图得到的数学公式是.故选:B【点睛】本题考查的是根据面积推导乘法公式,灵活运用整体面积等于部分面积之和是解题的关键.5、A【分析】由折叠可知DE是线段AC的垂直平分线,利用线段垂直平分线的性质可得结论.【详解】解:由题意得DE垂直平分线段AC,中的周长为所以的周长为22.故答案为:22.【点睛】本题考查了线段垂直平分线的性质,灵活利用线段垂直平分线上的点到线段两端的距离相等这一性质是解题的关键.6、A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【详解】①若这5次成绩的平均数是8,则,故正确;②若这5次成绩的中位数为8,则可以任意数,故错误;③若这5次成绩的众数为8,则只要不等于7或9即可,故错误;④若时,方差为,故错误.所以正确的只有1个故选:A.【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.7、C【解析】试题分析:多边形的内角和公式为(n-2)×180°,根据题意可得:(n-2)×180°=900°,解得:n=1.考点:多边形的内角和定理.8、A【解析】根据轴对称图形的定义:在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴,逐一判定即可.【详解】A选项,是轴对称图形,有4条对称轴;B选项,是轴对称图形,有2条对称轴;C选项,不是轴对称图形;D选项,是轴对称图形,有3条对称轴;故选:A.【点睛】此题主要考查对轴对称图形以及对称轴的理解,熟练掌握,即可解题.9、C【分析】已知∠A=,根据等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和求出∠P5P4B=5,且∠P5P4B=95°,即可求解.【详解】∵P1A=P1P2=P2P3=P3P4=P4P5∴∠A=∠AP2P1=∴∵∠P5P4B=∴故选:C【点睛】本题考查了等腰三角形等边对等角的性质以及三角形一个外角等于与它不相邻的两个内角和.10、B【分析】过点A作AE⊥BC,得到E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,求出BE=,进而求出DE=-2=,即可求CD.【详解】过点A作AE⊥BC.∵AD=AC,∴E是CD的中点,在Rt△ABE中,AB=5,∠ABC=60°,∴BE=.∵BD=2,∴DE=﹣2=,∴CD=1.故选:B.【点睛】此题考查等腰三角形与直角三角形的性质;熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.11、D【分析】解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【点睛】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.12、D【分析】用以上数字分别除以180,判断商是否为整数,即可得出答案.【详解】A:312340°÷180°≈1735.2,故A错误;B:211200°÷180°≈1173.3,故B错误;C:200220°÷180°≈1112.3,故C错误;D:222120°÷180°=1234,故D正确;故答案选择D.【点睛】本题考查的是多边形的内角和公式:(n-2)×180°,其中n为多边形的边数.二、填空题(每题4分,共24分)13、轴【解析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【点睛】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键.14、1【分析】把代入方程组,得,两个方程相加,即可求解.【详解】把代入方程组,得:,①+②得:5a﹣b=1.故答案为:1.【点睛】本题主要考查二元一次方程组的解的定义,掌握方程的解的定义和加减消元法,是解题的关键.15、1【分析】利用长方形的周长和面积计算公式列式计算即可.【详解】解:长方形的周长=2×(+)=2×(+2)=6,长方形的面积=×=1.
故答案为:6;1.【点睛】此题考查二次根式运算的实际应用,掌握长方形的周长和面积计算方法是解决问题的关键.16、【分析】根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边列不等式求解即可.【详解】解:三角形三边之长分别为2,9,..解得.故答案:.【点睛】本题考查了根据三角形的三边关系建立不等式组解决实际问题的运用,不等式组解法的运用和根据三角形的三边关系建立不等式组是解答本题的关键.17、-1【分析】先根据二次根式与绝对值的非负性及非负数之和为零,得到各项均为零,再列出方程组求解即可.【详解】∵,,∴,∴解得:∴故答案为:-1.【点睛】本题主要考查了二次根式的非负性、绝对值的非负性及乘方运算,根据非负数之和为零得出各项均为零是解题关键.18、±3【详解】∵=9,∴9的平方根是.故答案为3.三、解答题(共78分)19、(1)80°;(2)∠B=∠D+∠BPD,证明见解析;(3)∠BPD=∠B+∠D+BQD;;(4)360°.【分析】(1)过P作平行于AB的直线,根据内错角相等可得出三个角的关系,然后将∠B=50°,∠D=30°代入,即可求∠BPD的度数;(2)先由平行线的性质得到∠B=∠BOD,然后根据∠BOD是三角形OPD的一个外角,由此可得出三个角的关系;(3)延长BP交QD于M,再根据三角形的一个外角等于与它不相邻的两个内角的和解答;(4)根据三角形外角性质得出∠CMN=∠A+∠E,∠DNB=∠B+∠F,代入∠C+∠D+CMN+∠DNM=360°即可求出答案.【详解】(1)如图1,过P点作PO∥AB,∵AB∥CD,∴CD∥PO∥AB,∴∠BPO=∠B,∠OPD=∠D,∵∠BPD=∠BPO+∠OPD,∴∠BPD=∠B+∠D.∵∠B=50°,∠D=30°,∴∠BPD=∠B+∠D=50°+30°=80°;(2)∠B=∠D+∠BPD,∵AB∥CD,∴∠B=∠BOD,∵∠BOD=∠D+∠BPD,∴∠B=∠D+∠BPD;(3)如图:延长BP交QD于M在△QBM中:∠BMD=∠BQD+∠QBM在△PMD中:∠BPD=∠BMD+∠D=∠BQD+∠QBM+∠D故答案为:∠BPD=∠B+∠D+BQD∴、、、之间的数量关系为:∠BPD=∠B+∠D+BQD(4)如图∵∠CMN=∠A+∠E,∠DNB=∠B+∠F,又∵∠C+∠D+∠CMN+∠DNM=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.20、8或【分析】先求得,,继而证得,分两种情况讨论,根据“角所对直角边等于斜边的一半”即可求解.【详解】令直线与轴交于点C,
令中,则,
∴,
令中,则,
∴,∴,
∴,
如图1所示,当时,∵,
∴∠,
∴;
如图2所示,当∠时,∵,
∴,∴,∵,∴,解得:,∴,故答案为:8或.【点睛】本题考查了一次函数图象上点的坐标特征以及“角所对直角边等于斜边的一半”,解题的关键是求出∠或.21、(1)见解析;(2)150°;(3)【分析】(1)根据“SAS”证明△ABD≌△ACE即可;(2)根据小明的构造方法,通过证明△BAP≌△BMC,可证∠BPA=∠BMC,AP=CM,根据勾股定理的逆定理得到∠PMC=90°,于是得到结论;(3)根据已知可得△ABC是等腰直角三角形,所以将△ADB绕点A逆时针旋转90°,得到△ACE,则BD=CE,证明△DCE是直角三角形,再利用勾股定理可求CE值.【详解】(1)∵,∴,在△ABD和△ACE中,∵,,AD=AE,∴△ABD≌△ACE,∴;(2)由小明的构造方法可得,BP=BM=PM,∠PBM=∠PMB=60°,∴∠ABP=∠CBM,又∵AB=BC,∴△BAP≌△BMC,∴∠BPA=∠BMC,AP=CM,∵,∴,设CM=3x,PM=4x,PC=5x,∵(5x)2=(3x)2+(4x)2,∴PC2=CM2+PM2,∴△PCM是直角三角形,∴∠PMC=90°,∴∠BPA=∠BMC=60°+90°=150°;(3)∵∠ACB=∠ABC=45°,∴∠BAC=90°,且AC=AB.将△ADB绕点A顺时针旋转90°,得到△ACE,∴AD=AE,∠DAE=90°,BD=CE.∴∠EDA=45°,DE=AD=4.∵∠ADC=45°,∴∠EDC=45°+45°=90°.在Rt△DCE中,利用勾股定理可得,CE=,∴BD=CE=.【点睛】本题综合考查了旋转的性质,等边三角形的性质,勾股定理及其逆定理,以及全等三角形的判定与性质等知识点.旋转变化前后,对应角、对应线段分别相等,图形的大小、形状都不变.22、∠ADF=40°.【分析】根据外角的性质得到∠CFD=∠CDE﹣∠C=125°﹣45°=80°,根据平行线的性质得到∠BAC=∠DFC=80°,根据角平分线的定义得到∠FAD=∠BAC=40°,于是得到结论.【详解】解:∵∠CDE=125°,∠C=45°,∴∠CFD=∠CDE﹣∠C=125°﹣45°=80°,∵AB∥EF,∴∠BAC=∠DFC=80°,∵AD平分∠BAC,∴∠FAD=∠BAC=40°,∴∠ADF=∠DFC﹣∠DAF=40°.【点睛】本题考查了平行线的性质,三角形的外角的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.23、,-2【分析】先计算括号内的,再将除法转化成乘法,然后从-3,-1,1,3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题..【详解】解:原式====将x=1代入,原式=-2.【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24、(1)作图见解析;(2)作图见解析A2(﹣3,﹣2),B2(0,﹣3),C2(﹣2,﹣5).【分析】(1)关于x轴的两点横坐标相同,纵坐标互为相反数,分别画出各点,然后顺次进行连接得出图形;(2)根据平移的法则画出图形,得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育培训资源租赁合同
- 塑料制品物流招标模板
- 外籍员工住宿租赁合同
- 文化创意产业人才聘用合同样本
- 专卖店电气系统聘用协议
- 农业机械检修安全要求
- 北京旅游纪念品采购策略
- 生态保护区用地管理办法
- 生态环境监测站合同范例
- 硬件公司图书室管理办法
- 设备维修岗位危险源辨识风险评价及控制表
- 【课件】第5课+森さんは+7時に+起きます+课件-高中日语新版标准日本语初级上册
- 小学英语-Mum bug's bag教学设计学情分析教材分析课后反思
- 复盘养猪分析:探寻背后的成功秘诀
- 《我国运动员在奥林匹克运动会取得的辉煌成绩》 课件
- 旅行社团队确认书三篇
- 海康2023综合安防工程师认证试题答案HCA
- 《超市水果陈列标准》
- 施美美的《绘画之道》与摩尔诗歌新突破
- 跌倒坠床PDCA循环管理降低住院患者跌倒坠床发生率
- WinCCflexible的传送操作HMI设备设置入门
评论
0/150
提交评论