版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省泉港一中学、城东中学数学八上期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A. B. C. D.2.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35° B.40° C.45° D.55°3.一件工程甲单独做a小时完成,乙单独做b小时完成,甲、乙二人合作完成此项工作需要的小时数是()A.a+b B. C. D.4.下列图形中:①线段,②角,③等腰三角形,④有一个角是30°的直角三角形,其中一定是轴对称图形的个数()A.1个 B.2个 C.3个 D.4个5.如图,在中,是的平分线,且,若,则的大小为()A. B. C. D.6.下列各式从左到右的变形正确的是()A.= B.=C.=- D.=7.已知一种细胞的直径约为,请问这个数原来的数是()A. B. C. D.8.计算的结果是(
).A.
B.
C. D.9.现有7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=2b B.a=3b C.a=3.5b D.a=4b10.现有甲,乙两个工程队分别同时开挖两条600m长的隧道,所挖遂道长度y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是()A.甲队每天挖100mB.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当时,甲、乙两队所挖管道长度相同11.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm12.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.3二、填空题(每题4分,共24分)13.如图,等腰△ABC中,AB=AC,折叠△ABC,使点A与点B重合,折痕为DE,若∠DBC=15°,则∠A的度数是______.14.如图,△ABC中,∠ACB=90°,AC≤BC,将△ABC沿EF折叠,使点A落在直角边BC上的D点处,设EF与AB、AC边分别交于点E、点F,如果折叠后△CDF与△BDE均为等腰三角形,那么∠B=_____.15.数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣2)(b﹣1).现将数对(m,2)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是_____.(结果要化简)16.我国南宋数学家杨辉用如图的三角形解释二项和的乘方规律,我们称这个三角形为“杨辉三角”,观察左边展开的系数与右边杨辉三角对应的数,则展开后最大的系数为_____17.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________18.把一块直尺与一块三角板如图放置,若∠1=44°,则∠2的度数是_____.三、解答题(共78分)19.(8分)已知△ABC中,AB=AC,点P是AB上一动点,点Q是AC的延长线上一动点,且点P从B运动向A、点Q从C运动向Q移动的时间和速度相同,PQ与BC相交于点D,若AB=,BC=1.(1)如图1,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线,垂足为E,当点P、Q在移动的过程中,设BE+CD=λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.20.(8分)先化简,再求值:,并从,,,这四个数中取一个合适的数作为的值代入求值.21.(8分)如图,ΔABC中,A点坐标为(2,4),B点坐标为(-3,-2),C点坐标为(3,1).(1)在图中画出ΔABC关于y轴对称的ΔA′B′C′(不写画法),并写出点A′,B′,C′的坐标;(2)求ΔABC的面积.22.(10分)星期天,小明和小芳从同一小区门口同时出发,沿同一路线去离该小区1800米的少年宫参加活动,为响应“节能环保,绿色出行”的号召,两人都步行,已知小明的速度是小芳的速度的1.2倍,结果小明比小芳早6分钟到达,求小芳的速度.23.(10分)如图,直线L:与x轴、y轴分别交于A、B两点,在y轴上有一点,动点M从A点以每秒1个单位的速度沿x轴向左移动.求A、B两点的坐标;求的面积S与M的移动时间t之间的函数关系式;当t为何值时≌,并求此时M点的坐标.24.(10分)先化简,然后从﹣1,0,2中选一个合适的x的值,代入求值.25.(12分)一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图像如下图所示:(1)根据图像,直接写出y1、y2关于x的函数关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.26.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.
参考答案一、选择题(每题4分,共48分)1、B【分析】根据轴对称图形的概念求解即可.【详解】A.不是轴对称图形,本选项错误;B.是轴对称图形,本选项正确;C.不是轴对称图形,本选项错误;D.不是轴对称图形,本选项错误.故选B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、C【解析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.3、D【解析】设工程总量为m,表示出甲,乙的做工速度.再求甲乙合作所需的天数.【详解】设工程总量为m,则甲的做工速度为,乙的做工速度.若甲、乙合作,完成这项工程所需的天数为.故选D.【点睛】没有工作总量的可以设出工作总量,由工作时间=工作总量÷工作效率列式即可.4、C【分析】直接利用轴对称图形的性质分别分析得出答案.【详解】解:①线段,是轴对称图形;②角,是轴对称图形;③等腰三角形,是轴对称图形;④有一个角是30°的直角三角形,不是轴对称图形.故选:C.【点睛】本题考查的知识点是轴对称图形的定义,理解定义内容是解此题的关键.5、B【分析】在AB上截取AC′=AC,连接DC′,由题知AB=AC+CD,得到DC=C′B,可证得△ADC≌△ADC′,即可得到△BDC′是等腰三角形,设∠B=x,利用三角形的内角和公式即可求解.【详解】解:在AB上截取AC′=AC,连接DC′如图所示:∵AB=AC+CD∴BC′=DC∵AD是∠BAC的角平分线∴∠C′AD=∠DAC在△ACD和△AC′D中∴△ACD≌△AC′D∴C′D=DC,∠ACD=∠AC′D∴DC′=BC′∴△BC′D是等腰三角形∴∠C′BD=∠C′DB设∠C′BD=∠C′DB=x,则∠ACD=∠AC′D=2x∵∠BAC=81°∴x+2x+81°=180°解得:x=33°∴∠ACB=33°×2=66°故选:B.【点睛】本题主要考查的是全等三角形的判定以及角平分线的性质,掌握全等三角形的判定和角平分线的性质是解题的关键.6、D【解析】解:A.根据分式的基本性质应该分子和分母都除以b,故本选项错误;B.根据分式的基本性质,分子和分母都加上2不相等,故本选项错误;C.,故本选项错误;D.∵a−2≠0,∴,故本选项正确;故选D.7、D【分析】把还原成一般的数,就是把1.49的小数点向左移动4位.【详解】这个数原来的数是cm故选:D【点睛】此题主要考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n<0时,|n|是几,小数点就向左移几位.8、D【解析】试题分析:积的乘方等于乘方的积;幂的乘方法则:底数不变,指数相乘.9、B【解析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【详解】解:法1:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.法2:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为x,左上阴影增加的是3bx,右下阴影增加的是ax,因为S不变,∴增加的面积相等,∴3bx=ax,∴a=3b.故选:B.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.10、D【分析】从图象可以看出甲队完成工程的时间不到6天,故工作效率为100米,乙队挖2天后还剩300米,4天完成了200米,故每天是50米,当x=4时,甲队完成400米,乙队完成400米,甲队完成所用时间是6天,乙队是8天,通过以上的计算就可以得出结论.【详解】解:由图象,得600÷6=100米/天,故A正确;(500-300)÷4=50米/天,故B正确;由图象得甲队完成600米的时间是6天,乙队完成600米的时间是:2+300÷50=8天,∵8-6=2天,∴甲队比乙队提前2天完成任务,故C正确;当x=3时,甲队所挖管道长度=3×100=300米,乙队所挖管道长度=300+(3-2)×50=350米,故D错误;故选:D.【点睛】本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.11、C【分析】根据在直角三角形中,30度角所对直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值.【详解】∵ED⊥AB,∠A=30°,∴AE=2ED.∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.故选C.【点睛】本题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度角所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.12、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.二、填空题(每题4分,共24分)13、50°【分析】设∠A=x,根据折叠的性质可得∠DBA=∠A=x,然后根据角的关系和三角形外角的性质即可求出∠ABC和∠BDC,然后根据等边对等角即可求出∠C,最后根据三角形的内角和定理列出方程即可求出结论.【详解】解:设∠A=x,由折叠的性质可得∠DBA=∠A=x∴∠ABC=∠DBC+∠DBA=15°+x,∠BDC=∠DBA+∠A=2x∵AB=AC,∴∠ABC=∠C=15°+x∵∠C+∠DBC+∠BDC=180°∴15+x+15+2x=180解得:x=50即∠A=50°故答案为:50°.【点睛】此题考查的是折叠的性质、三角形外角的性质、等腰三角形的性质和三角形内角和定理,掌握折叠的性质、三角形外角的性质、等腰三角形的性质、三角形内角和定理和方程思想是解决此题的关键.14、45°或30°【分析】先确定△CDF是等腰三角形,得出∠CFD=∠CDF=45°,因为不确定△BDE是以那两条边为腰的等腰三角形,故需讨论,①DE=DB,②BD=BE,③DE=BE,然后分别利用角的关系得出答案即可.【详解】∵△CDF中,∠C=90°,且△CDF是等腰三角形,∴CF=CD,∴∠CFD=∠CDF=45°,设∠DAE=x°,由对称性可知,AF=FD,AE=DE,∴∠FDA=∠CFD=22.5°,∠DEB=2x°,分类如下:①当DE=DB时,∠B=∠DEB=2x°,由∠CDE=∠DEB+∠B,得45°+22.5°+x=4x,解得:x=22.5°.此时∠B=2x=45°;见图形(1),说明:图中AD应平分∠CAB.②当BD=BE时,则∠B=(180°﹣4x)°,由∠CDE=∠DEB+∠B得:45°+22.5°+x=2x+180°﹣4x,解得x=37.5°,此时∠B=(180﹣4x)°=30°.图形(2)说明:∠CAB=60°,∠CAD=22.5°.③DE=BE时,则∠B=(180﹣2x)°,由∠CDE=∠DEB+∠B得,45°+22.5°+x=2x+(180﹣2x)°,此方程无解.∴DE=BE不成立.综上所述,∠B=45°或30°.故答案为:45°或30°.【点睛】本题考查了翻折变换及等腰三角形的知识,在不确定等腰三角形的腰时要注意分类讨论,不要漏解,另外要注意方程思想在求解几何问题中的应用.15、m2﹣5m+4【分析】魔术盒的变化为:数对进去后变成第一个数减2的差乘以第二个数减1的差的积.把各个数对放入魔术盒,计算结果即可.【详解】解:当数对(m,2)放入魔术盒,得到的新数n=(m﹣2)(2﹣1)=m﹣2,把数对(n,m)放入魔术盒,得到的新数为:(n﹣2)(m﹣1)=(m﹣2﹣2)(m﹣1)=(m﹣4)(m﹣1)=m2﹣5m+4故答案为:m2﹣5m+4【点睛】本题考查了整式的乘法,多项式乘多项式,即用第一个多项式的每一项乘第二个多项式的每一项,熟练掌握多项式乘多项式是解题的关键.16、15【解析】根据题意已知的式子找到展开后最大的系数规律即可求解.【详解】∵展开后最大的系数为1=0+1;展开后最大的系数为2=1+1;展开后最大的系数为3=1+2;展开后最大的系数为6=1+2+3;∴展开后最大的系数为1+2+3+4=10;展开后最大的系数为1+2+3+4+5=15;故答案为:15.【点睛】此题主要考查多项式的规律探索,解题的关键是根据已知的式子找到规律求解.17、25【解析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB==25cm;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=cm;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30cm,在直角三角形ABC中,根据勾股定理得:∴AB=cm;∵25<5<5,∴自A至B在长方体表面的连线距离最短是25cm.故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.18、134°【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【详解】解:∵∠1=44°,∴∠3=90°﹣∠1=90°﹣44°=46°,∴∠4=180°﹣46°=134°,∵直尺的两边互相平行,∴∠2=∠4=134°.故答案为134°.【点睛】本题考查平行线的性质,直角三角形两锐角互余的性质,邻补角的定义,准确识图是解题的关键.三、解答题(共78分)19、(1)4;(2)2【分析】(1)过P点作PF∥AC交BC于F,由点P和点Q同时出发,且速度相同,得出BP=CQ,根据PF∥AQ,可知∠PFB=∠ACB,∠DPF=∠CQD,则可得出∠B=∠PFB,证出BP=PF,得出PF=CQ,由AAS证明△PFD≌△QCD,得出,再证出F是BC的中点,即可得出结果;
(2)过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,可得BE=BF,由(1)证明方法可得△PFD≌△QCD则有CD=,即可得出BE+CD=2.【详解】解:(1)如图①,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=2,∴CD=CF=4;(2)为定值.如图②,点P在线段AB上,过点P作PF∥AC交BC于F,易知△PBF为等腰三角形,∵PE⊥BF∴BE=BF∵易得△PFD≌△QCD∴CD=∴【点睛】此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.20、;当时,值为.【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用分式有意义的条件得出符合分式的x的值,代入计算可得.【详解】解:原式为使分式有意义,则有,,,,,,此时,取当时,原式【点睛】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及因式分解的应用,注意取合适的值时,要使分式有意义.21、(1)见解析,A′(-2,4),B′(3,-2),C′(-3,1);(2)【分析】(1)根据网格结构找出点A′、B′、C′的位置,然后顺次连接即可;(2)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积,然后列式计算即可得解.【详解】解:(1)如图,A′(-2,4),B′(3,-2),C′(-3,1);(2)S△ABC=6×6-×5×6-×6×3-×1×3,=36-15-9-,=.【点睛】本题考查了利用轴对称变换作图,三角形的面积的求解,熟练掌握网格结构准确找出对应点的位置是解题的关键.22、小芳的速度是50米/分钟.【分析】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据路程÷速度=时间,列出方程,再求解即可.【详解】设小芳的速度是x米/分钟,则小明的速度是1.2x米/分钟,根据题意得:,解得:x=50,经检验x=50是原方程的解,答:小芳的速度是50米/分钟.23、(1)A(0,4),B(0,2);(2);(3)当t=2或1时,△COM≌△AOB,此时M(2,0)或(﹣2,0).【分析】(1)由直线L的函数解析式,令y=0求A点坐标,x=0求B点坐标;(2)由面积公式S=OM•OC求出S与t之间的函数关系式;(3)若△COM≌△AOB,OM=OB,则t时间内移动了AM,可算出t值,并得到M点坐标.【详解】(1)∵y=﹣x+2,当x=0时,y=2;当y=0时,x=4,则A、B两点的坐标分别为A(4,0)、B(0,2);(2)∵C(0,4),A(4,0)∴OC=OA=4,当0≤t≤4时,OM=OA﹣AM=4﹣t,S△OCM=×4×(4﹣t)=8﹣2t;当t>4时,OM=AM﹣OA=t﹣4,S△OCM=×4×(t﹣4)=2t﹣8;∴的面积S与M的移动时间t之间的函数关系式为:(3)∵OC=OA,∠AOB=∠COM=90°,∴只需OB=OM,则△COM≌△AOB,即OM=2,此时,若M在x轴的正半轴时,t=2,M在x轴的负半轴,则t=1.故当t=2或1时,△C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 印刷厂建设钢结构施工合同
- 建筑结构加固工程合同
- 城市绿化招投标评估表
- 单身宿舍卫生检查标准
- 电子商务地下车库建设合同
- 美容服务合同执行指南
- 展览展示皮卡租赁协议
- 市民服务点行为导则
- 翻译公司翻译员招聘合同范本
- 体育场馆物业服务优化投标
- 会计技能大赛实训总结与反思
- 三年级上《人、自然、社会》教学计划
- 《开放互动的世界作业设计方案-2023-2024学年初中道德与法治统编版》
- 无人机驾驶航空器飞行管理暂行条例(草案)知识考试题库(85题)
- 真空堆载联合预压介绍
- 智能制造的自动化生产线与柔性制造
- 国企内部审计章程
- 热力工程施工方案
- 全季酒店营销策略分析
- 银行营销策略市场调研分析
- 2024年房地产公司设计类技术笔试历年真题荟萃含答案
评论
0/150
提交评论