2025届湖南省益阳市赫山区数学八年级第一学期期末达标测试试题含解析_第1页
2025届湖南省益阳市赫山区数学八年级第一学期期末达标测试试题含解析_第2页
2025届湖南省益阳市赫山区数学八年级第一学期期末达标测试试题含解析_第3页
2025届湖南省益阳市赫山区数学八年级第一学期期末达标测试试题含解析_第4页
2025届湖南省益阳市赫山区数学八年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省益阳市赫山区数学八年级第一学期期末达标测试试题试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.关于x的方程的解为正数,则k的取值范围是()A. B. C.且 D.且2.如图,在中,,点在上,于点,的延长线交的延长线于点,则下列结论中错误的是()A. B. C. D.3.若分式有意义,则的取值范围为()A. B. C. D.4.下列四个图形中轴对称图形的个数是()A.1 B.2 C.3 D.45.关于x的方程无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.56.下列二次根式中,与是同类二次根式的是()A. B. C. D.7.下列图形中,是轴对称图形的是()A. B. C. D.8.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣3,0),且两直线与y轴围成的三角形面积为12那么b2﹣b1的值为()A.3 B.8 C.﹣6 D.﹣89.已知△ABC中,AB=17cm,AC=10cm,边上的高AD=8cm,则边的长为()A. B.或 C. D.或10.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A.52 B.68 C.72 D.7611.估计的值约为()A.2.73 B.1.73 C.﹣1.73 D.﹣2.7312.化简的结果为()A. B.5 C.-5 D.二、填空题(每题4分,共24分)13.若为三角形的三边,且满足,第三边为偶数,则=__________.14.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行.直线沿轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图1中的点的坐标为__________,图2中的值为__________.15.若,则=______16.已知一组数据为:5,3,3,6,3则这组数据的方差是______.17.计算:____________.18.在平面直角坐标系中,的顶点B在原点O,直角边BC,在x轴的正半轴上,,点A的坐标为,点D是BC上一个动点(不与B,C重合),过点D作交AB边于点E,将沿直线DE翻折,点B落在x轴上的F处.(1)的度数是_____________;(2)当为直角三角形时,点E的坐标是________________.三、解答题(共78分)19.(8分)如图所示,在平面直角坐标系中,的三个顶点坐标为,,.在图中作出先向右平移4个单位再向下平移1个单位长的图形,再作出关于轴对称的图形,并写出点、的坐标.20.(8分)如图,在△ABC中,∠B=90,∠C=30°,AB=6cm,BC=6cm,动点P从点B开始沿边BA、AC向点C以3cm/s的速度移动,动点Q从点B开始沿边BC向点C以cm/s的速度移动,动点P、Q同时出发,到点C运动结束.设运动过程中△BPQ的面积为y(cm2),运动时间为t(s).(1)点P运动到点A,t=(s);(2)请你用含t的式子表示y.21.(8分)(1)在等边三角形中,①如图①,,分别是边,上的点,且,与交于点,则的度数是___________度;②如图②,,分别是边,延长线上的点,且,与的延长线交于点,此时的度数是____________度;(2)如图③,在中,,是锐角,点是边的垂直平分线与的交点,点,分别在,的延长线上,且,与的延长线交于点,若,求的大小(用含法的代数式表示).22.(10分)某校积极开展“我爱我的祖国”教育知识竞赛,八年级甲、乙两班分别选5名同学参加比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数方差甲班8.5乙班8.5101.6(2)根据上表数据,分别从平均数、中位数、众数、方差的角度对甲乙两班进行分析.23.(10分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?24.(10分)已知直线y=kx+b(k≠0)经过点A(3,0),B(1,2)(1)求直线y=kx+b的函数表达式;(2)若直线y=x﹣2与直线y=kx+b相交于点C,求点C的坐标;(3)写出不等式kx+b>x﹣2的解.25.(12分)由甲、乙两个工程队承包某校校园的绿化工程,甲、乙两队单独完成这项工程所需的时间比是5:3,两队共同施工15天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队共同施工15天完成任务后,学校付给他们20000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各应得到多少元?26.如图,△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足为D点,AE平分∠BAC,交BD于F,交BC于E,点G为AB的中点,连接DG,交AE于点H,(1)求∠ACB的度数;(2)HE=AF

参考答案一、选择题(每题4分,共48分)1、C【分析】先对分式方程去分母,再根据题意进行计算,即可得到答案.【详解】解:分式方程去分母得:,解得:,根据题意得:,且,解得:,且.故选C.【点睛】本题考查分式方程,解题的关键是掌握分式方程的求解方法.2、A【分析】由题意中点E的位置即可对A项进行判断;过点A作AG⊥BC于点G,如图,由等腰三角形的性质可得∠1=∠2=,易得ED∥AG,然后根据平行线的性质即可判断B项;根据平行线的性质和等腰三角形的判定即可判断C项;由直角三角形的性质并结合∠1=的结论即可判断D项,进而可得答案.【详解】解:A、由于点在上,点E不一定是AC中点,所以不一定相等,所以本选项结论错误,符合题意;B、过点A作AG⊥BC于点G,如图,∵AB=AC,∴∠1=∠2=,∵,∴ED∥AG,∴,所以本选项结论正确,不符合题意;C、∵ED∥AG,∴∠1=∠F,∠2=∠AEF,∵∠1=∠2,∴∠F=∠AEF,∴,所以本选项结论正确,不符合题意;D、∵AG⊥BC,∴∠1+∠B=90°,即,所以本选项结论正确,不符合题意.故选:A.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.3、D【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】解:∵分式有意义,∴x+1≠0,

解得x≠-1.

故选:D.【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.4、C【解析】根据轴对称图形的概念求解.【详解】第1,2,3个图形为轴对称图形,共3个.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5、A【解析】解:去分母得:3x﹣2=2x+2+m①.由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程①得:﹣1=﹣2+2+m,解得:m=﹣1.故选A.6、C【分析】同类二次根式定义为几个二次根式化简成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【详解】符合定义的只有C项,所以答案选择C项.【点睛】本题考查了同类二次根式的定义,熟练掌握定义是解答本题的关键.7、B【分析】根据轴对称图形的定义判断即可.【详解】A是中心对称图形,B是轴对称图形,C是中心对称图形,D即不是中心对称图形也不是轴对称图形.故选B.【点睛】本题考查对称轴图形的判断,关键在于牢记对称轴图形的定义.8、D【分析】直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),根据三角形面积公式即可得出结果.【详解】解:如图,直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),∵△ABC的面积为12,∴OA·(OB+OC)=12,即×3×(b1﹣b2)=12,∴b1﹣b2=8,∴b2﹣b1=﹣8,故选:D.【点睛】本题考查了一次函数的应用,正确理解题意,能够画出简图是解题的关键.9、B【分析】高线AD可能在三角形的内部也可能在三角形的外部,分两种情况进行讨论,分别依据勾股定理即可求解.【详解】解:分两种情况:①如图在Rt△ABD中,∠ADB=90°,由勾股定理得,AB2=AD2+BD2∴172=82+BD2,解得BD=15cm,在Rt△ACD中,∠ADC=90°,由勾股定理得,AC2=AD2+CD2∴102=82+CD2,解得CD=6cm,∴BC=BD+CD=15+6=21cm;②如图由勾股定理求得BD=15cm,CD=6cm,∴BC=BD-CD=15-6=9cm.∴BC的长为21cm或9cm.故选B【点睛】当涉及到有关高的题目时,高的位置可能在三角形的内部,也可能在三角形的外部,所以分类讨论计算是此类题目的特征.10、D【分析】先根据勾股定理求出BD的长度,然后利用外围周长=即可求解.【详解】由题意可知∵∴∴风车的外围周长是故选:D.【点睛】本题主要考查勾股定理,掌握勾股定理是解题的关键.11、B【分析】先求出的范围,即可求出答案.【详解】解:∵1<<2,∴的值约为1.73,故选:B.【点睛】本题考查近似数的确定,熟练掌握四舍五入求近似数的方法是解题的关键.12、B【解析】根据算数平方根的意义,若一个正数x的平方等于即,则这个正数x为的算术平方根.据此将二次根式进行化简即可.【详解】故选B【点睛】本题考查了二次根式的化简,解决本题的关键是熟练掌握算数平方根的意义.二、填空题(每题4分,共24分)13、3【分析】先根据非负数的性质求出a和b的值,再根据三角形三边关系求出c的取值范围,进而求出c的值.【详解】∵a、b满足(b﹣1)1=0,∴a=3,b=1.∵a、b、c为三角形的三边,∴8<c<11.∵第三边c为偶数,∴c=3.故答案为:3.【点睛】本题考查了三角形三边关系以及非负数的性质,解答本题的关键是求出a和b的值,此题难度不大.14、(1,0)5【解析】令直线y=x-3=0,解得x=3,即可得直线y=x-3与x轴的交点坐标为(3,0),根据图可知,开始平移2s后直线到达点A,所以点A横坐标为3-2=1,所以点A坐标为(1,0);由图象2可知,直线y=x-3平移12s时,正好经过点C,此时平移后的直线与x轴交点的横坐标为(-9,0),所以点A到这个交点的距离为10,即可得AD=5,根据勾股定理求得BD=5,当y=x-3平移到BD的位置时m最大,即m最大为5,所以b=5.点睛:本题主要考查了一次函数图像的平移,根据图象获取信息是解决本题的关键.15、【解析】根据0指数幂的意义可得2x+1=0,解方程即可求得答案.【详解】因为:,所以2x+1=0,所以x=,故答案为:.【点睛】本题考查了0指数幂运算的应用,熟练掌握是解题的关键.16、【解析】先求出平均数,再根据方差的公式计算即可.【详解】这组数据的平均数是:,则这组数据的方差是;故答案为.【点睛】此题考查了方差:一般地设n个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17、【分析】根据商的乘方,分子、分母分别平方,然后在分别用积的乘方,幂的乘方法则来计算即可得结果.【详解】,故答案为:【点睛】利用商的乘方法则,在用积的乘方计算时,要注意负数的平方是正数,积的乘方法则计算,以及幂的乘方计算时注意指数相乘的关系.18、30°(1,)或(2,)【分析】(1)根据∠ACB=90°以及点A的坐标,得到AC和BC的长,再利用特殊角的三角函数值求解即可;(2)根据直角三角形的定义可分三种情况考虑:①当∠AEF=90°时,②当∠AEF=90°时,③当∠EAF=90°时,三种情况分别求解.【详解】解:(1)∵∠ACB=90°,点A的坐标为,∴AC=,BC=3,∴tan∠ABC==,∴∠ABC=30°,故答案为:30°;(2)△AEF为直角三角形分三种情况:①当∠AEF=90°时,

∵∠OED=∠FED,且∠OED+∠FED+∠AEF=180°,

∴∠OED=45°.

∵∠ACB=90°,点A的坐标为,∴tan∠ABC=,∠ABC=30°.

∵ED⊥x轴,

∴∠OED=90°-∠ABC=60°.

45°≠60°,此种情况不可能出现;②当∠AFE=90°时,

∵∠OED=∠FED=60°,

∴∠AEF=60°,

∵∠AFE=90°,

∴∠EAF=90°-∠AEF=30°.

∵∠BAC=90°-∠ABC=60°,

∴∠FAC=∠BAC-∠EAF=60°-30°=30°.

∵AC=,∴CF=AC•tan∠FAC=1,

∴OF=OC-FC=3-1=2,∴OD=1,∴DE=tan∠ABC×OD=,∴点E的坐标为(1,);③当∠EAF=90°时,

∵∠BAC=60°,

∴∠CAF=∠EAF-∠EAC=90°-60°=30°,

∵AC=,∴CF=AC•tan∠FAC=1,

∴OF=OC+CF=3+1=4,∴OD=2,∴DE=tan∠ABC×OD=,∴点E的坐标为(2,);综上知:若△AEF为直角三角形.点E的坐标为(1,)或(2,).故答案为:(1,)或(2,).【点睛】本题考查了一次函数图象与几何变换、角的计算以及解直角三角形,解题的关键是根据角的计算以及解直角三角形找出CF的长度.本题属于中档题,难度不大,但在解决该类题型时,部分同学往往会落掉2种情况,因此在平常教学中应多加对学生引导,培养他们考虑问题的全面性.三、解答题(共78分)19、见解析,,【分析】先找出先向右平移4个单位对应的图形,再作出关于轴对称的图形,然后顺次连接各点后直接写出、的坐标即可;【详解】解:如图所示,、;【点睛】本题主要考查了作图-轴对称图形,掌握作图-轴对称图形是解题的关键.20、(1)1;(1).【分析】(1)由题意即可得出答案;(1)当0≤t<1时,S△BPQ•BQ•BP,当1≤t时,如下图所示,S△BPQ•BQ•HP即可求解.【详解】解:(1)点P运动到点A,t=6×3=1(s).故答案为:1.(1)当0≤t<1时,y=S△BPQ•BQ•BP•3t•tt1,即yt1;当t≥1时,作PH⊥BC于H,如图所示:y=S△BPQ•BQ•HPt(18﹣3t)t1t,即yt1t.【点睛】本题考查了动点问题的函数图象、直角三角形的性质、三角形面积等知识点.解题的关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.21、(1)60;(2)60;(3)【分析】(1)①只要证明△ACE≌△CBD,可得∠ACE=∠CBD,推出∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°;②只要证明△ACE≌△CBD,可得∠ACE=∠CBD=∠DCF,即可推出∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°;(2)只要证明△AEC≌△CDB,可得∠E=∠D,即可推出∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】解:(1)①如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60;②如图②,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60;(2)如图③中,图③点是边的垂直平分线与的交点,,,,,,,.【点睛】本题考查全等三角形的判定和性质和等腰三角形的性质和判定以及等边三角形的性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.22、(3)3.5,3.5,2.7,3;(2)见解析【分析】(3)利用条形统计图,结合众数、方差、中位数的定义分别求出答案;(2)利用平均数、众数、方差、中位数的定义分析得出答案.【详解】解:(3)如图:平均数中位数众数方差甲班3.53.53.52.7乙班3.53323.6甲班的平均数是:;∵3.5出现了2次,出现的次数最多,∴甲的众数为:3.5分,;乙的中位数是:3;故答案为:3.5,3.5,2.7,3;(2)从平均数看,两班平均数相同,则甲、乙两班的成绩一样高;从中位数看,甲班的中位数大,所以甲班的成绩较好;从众数看,乙班的众数大,所以乙班的成绩较好;从方差看,甲班的方差小,所以甲班的成绩更稳定;【点睛】此题主要考查了平均数、众数、方差、中位数的定义,正确把握相关定义是解题关键.23、解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得,解得x=1.经检验,x=1是方程的解且符合题意.1.5x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.24、(1)y=﹣x+3;(2)C点坐标为(,);(3)不等式kx+b>x﹣2的解集为x<.【分析】(1)利用待定系数法求直线的解析式;(2)通过解方程组得C点坐标;(3)解不等式-x+3>x-2得不等式kx+b>x-2的解集.【详解】解:(1)根据题意得,解得,∴直线解析式为y=﹣x+3;(2)解方程组得,∴C点坐标为(,);(3)解不等式﹣x+3>x﹣2得x<,即不等式kx+b>x﹣2的解集为x<.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.25、(1)甲队单独完成此项工程需要40天,乙队单独完成此项工程需要24天;(2)甲队应得的报酬为7500元,乙队应得的报酬为12500元.【分析】(1)首先表示出两工程队完成需要的时间,进而利用总工作量为1得出等式求出答案;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论