版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省常州市新北区外国语学校数学八年级第一学期期末联考试题末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如果一次函数的图象经过第二第四象限,且与x轴正半轴相交,那么()A. B. C. D.2.在平面直角坐标系中,点(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣2,3) D.(2,3)3.在平面直角坐标系中,点(5,6)关于x轴的对称点是()A.(6,5) B.(-5,6) C.(5,-6) D.(-5,-6)4.点P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组的解(a为任意实数),则当a变化时,点P一定不会经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.在下列各式中,计算正确的是()A. B. C. D.6.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4 B.5 C.6 D.47.运用乘法公式计算,下列结果正确的是()A. B. C. D.8.对于一次函数y=﹣2x+1,下列说法正确的是()A.图象分布在第一、二、三象限B.y随x的增大而增大C.图象经过点(1,﹣2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1>y29.如图是两个全等的三角形纸片,其三边长之比为,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该项点所在两边重合,记折叠后不重叠部分面积分别为,已知,则纸片的面积是()A. B. C. D.10.如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm二、填空题(每小题3分,共24分)11.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为______度.12.已知am=2,an=3,那么a2m+n=________.13.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.14.的立方根是__________.15.若关于的分式方程的解是负数,则m的取值范围是_________________.16.如图,中,DE垂直平分BC交BC于点D,交AB于点E,,,则______.17.等腰三角形的腰长为,底边长为,则其底边上的高为_________.18.如图,在平面直角坐标系中,矩形的两边分别在坐标轴上,,.点是线段上的动点,从点出发,以的速度向点作匀速运动;点在线段上,从点出发向点作匀速运动且速度是点运动速度的倍,若用来表示运动秒时与全等,写出满足与全等时的所有情况_____________.三、解答题(共66分)19.(10分)已知△ABC与△A’B’C’关于直线l对称,其中CA=CB,连接,交直线l于点D(C与D不重合)(1)如图1,若∠ACB=40°,∠1=30°,求∠2的度数;(2)若∠ACB=40°,且0°<∠BCD<110°,求∠2的度数;(3)如图2,若∠ACB=60°,且0°<∠BCD<120°,求证:BD=AD+CD.20.(6分)如图所示,在△ABC中,已知AB=AC,∠BAC=120°,AD⊥AC,DC=6求BD的长.21.(6分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)22.(8分)平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,,点在第一象限,,连接交轴于点,,连接.(1)请通过计算说明;(2)求证;(3)请直接写出的长为.23.(8分)已知点在轴正半轴上,以为边作等边,,其中是方程的解.(1)求点的坐标.(2)如图1,点在轴正半轴上,以为边在第一象限内作等边,连并延长交轴于点,求的度数.(3)如图2,若点为轴正半轴上一动点,点在点的右边,连,以为边在第一象限内作等边,连并延长交轴于点,当点运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.24.(8分)甲、乙两车从城出发匀速行驶至城,在整个行驶过程中,甲、乙离开城的距离(千米)与甲车行驶的时间(小时)之间的函数关系如图所示,根据图象信息解答下列问题:(1)乙车比甲车晚出发多少时间?(2)乙车出发后多少时间追上甲车?(3)求在乙车行驶过程中,当为何值时,两车相距20千米?25.(10分)计算26.(10分)如图所示,三点在同一条直线上,和为等边三角形,连接.请在图中找出与全等的三角形,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据一次函数的性质,即可判断k、b的范围.【详解】解:∵一次函数的图象经过第二第四象限,∴,∵直线与x轴正半轴相交,∴,∴;故选择:C.【点睛】本题考查了一次函数的图形和性质,解题的关键是根据直线所经过的象限,正确判断k、b的取值范围.2、C【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【详解】解:点(2,3)关于y轴对称的点的坐标是(﹣2,3).故选C.【点睛】本题考查关于x轴、y轴对称的点的坐标,利用数形结合思想解题是关键.3、C【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数即可得答案.【详解】点(5,6)关于x轴的对称点(5,-6),故选:C.【点睛】本题主要考查了关于x轴对称点的坐标特点,熟练掌握关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数是解题关键.4、C【分析】首先用消元法消去a,得到y与x的函数关系式,然后根据一次函数的图象及性质即可得出结论.【详解】解:用②×2+①,得∴∵∴过一、二、四象限,不过第三象限∴点P一定不会经过第三象限,
故选:C.【点睛】本题考查了一次函数与二元一次方程的知识,解题的关键是首先消去a,求出y与x的函数关系式.5、C【分析】根据同底数幂的乘法和除法以及幂的乘方、积的乘方判断即可.【详解】A.,该选项错误;B.,该选项错误;C.,该选项正确;D.,该选项错误.故选:C.【点睛】此题考查同底数幂的乘法、除法以及幂的乘方、积的乘方,熟练掌握运算法则是解答本题的关键.6、A【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.7、B【分析】利用添括号法则将y-3看成一个整体,然后利用平方差公式和完全平方公式计算即可.【详解】解:====故选B.【点睛】此题考查的是平方差公式和完全平方公式的应用,掌握平方差公式和完全平方公式是解决此题的关键.8、D【分析】根据一次函数的图象和性质,逐一判断选项,即可得到答案.【详解】A、∵k=﹣2<0,b=1>0,∴图象经过第一、二、四象限,故不正确;B、∵k=﹣2,∴y随x的增大而减小,故不正确;C、∵当x=1时,y=﹣1,∴图象不过(1,﹣2),故不正确;D、∵y随x的增大而减小,∴若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1>y2,故正确;故选:D.【点睛】本题主要考查一次函数的图象和性质,掌握一次函数解析式系数的几何意义,增减性,以及一次函数图象上点的坐标特征,是解题的关键.9、A【分析】设AC=FH=3x,则BC=GH=4x,AB=GF=5x,根据勾股定理即可求得CD的长,利用x表示出SA,同理表示出SB,根据,即可求得x的值,进而求得三角形的面积.【详解】解:如图,设AC=FH=3x,则BC=GH=4x,AB=GF=5x.设CD=y,则BD=4x-y,DE=CD=y,在直角△BDE中,BE=5x-3x=2x,根据勾股定理可得:4x2+y2=(4x-y)2,解得:y=x,则SA=BE•DE=×2x•x=x2,同理可得:SB=x2,∵SA-SB=10,∴x2-x2=10,∴x2=12,∴纸片的面积是:×3x•4x=6x2=1.故选A.【点睛】本题主要考查了折叠的性质,勾股定理,根据勾股定理求得CD的长是解题的关键.10、B【解析】根据“AAS”证明
ΔABD≌ΔEBD
.得到AD=DE,AB=BE,根据等腰直角三角形的边的关系,求其周长.【详解】∵BD是∠ABC的平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD是公共边,∴△ABD≌△EBD(AAS),∴AD=ED,AB=BE,∴△DEC的周长是DE+EC+DC=AD+DC+EC=AC+EC=AB+EC=BE+EC=BC=10cm.故选B.【点睛】本题考查了等腰直角三角形的性质,角平分线的定义,全等三角形的判定与性质.掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】根据等腰三角形的性质得出∠B=∠C,根据三角形内角和定理和已知得出5∠A=180°,求出即可.【详解】解:∵△ABC中,AB=AC,∴∠B=∠C,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,∴∠A:∠B=1:2,即5∠A=180°,∴∠A=1°,故答案为1.【点睛】本题考查了三角形内角和定理与等腰三角形的性质,解题的关键是能根据等腰三角形性质、三角形内角和定理与已知条件得出5∠A=180°.12、12【分析】逆用同底数幂的乘法法则和幂的乘方法则计算即可.【详解】∵am=2,an=3,∴a2m+n=a2m×an=×an=4×3=12.故答案为12.【点睛】本题考查了幂的乘方及同底数幂的乘法的逆运算,熟练掌握幂的乘方和同底数幂的乘法运算法则是解答本题的关键,即,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.13、1【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画1个三角形,故答案为:1.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.14、-1【解析】根据立方根的定义进行求解即可得.【详解】∵(﹣1)3=﹣8,∴﹣8的立方根是﹣1,故答案为﹣1.【点睛】本题考查了立方根的定义,熟练掌握立方根的定义是解题的关键.15、且【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于m的不等式,求出不等式的解集即可确定出m的范围.【详解】方程两边同乘(),
解得,
∵,
∴,
解得,
又,
∴,
∴,
即且.
故答案为:且.【点睛】本题考查了分式方程的解以及解一元一次不等式,关键是会解出方程的解,特别注意:不要漏掉隐含条件最简公分母不为1.16、【分析】利用线段垂直平分线的性质和等边对等角可得,从而可求得,再利用三角形内角和定理即可得解.【详解】解:∵DE垂直平分BC交BC于点D,,∴EC=BE,∴,∵,∴,∴.故答案为:.【点睛】本题考查垂直平分线的性质,等腰三角形的性质.理解垂直平分线的点到线段两端距离相等是解题关键.17、【分析】先画出图形,根据等腰三角形“三线合一”的性质及勾股定理即可求得结果.【详解】如图,AB=AC=8,BC=6,AD为高,则BD=CD=3,∴故答案为:【点睛】本题考查的是等腰三角形的性质,勾股定理,解答本题的关键是熟练掌握等腰三角形“三线合一”的性质:等腰三角形顶角平分线,底边上的高,底边上的中线重合.18、或【分析】当和全等时,得到OA=CQ,OQ=PC或OA=PC,OQ=QC,代入即可求出a、t的值.【详解】当和全等时,OA=CQ,OQ=PC或OA=PC,OQ=QC∵OA=8=BC,PC=2t,OQ=2at,QC=12−2at,代入得:或,解得:t=2,a=1,或t=4,a=,∴的所有情况是或故答案为:或.【点睛】本题主要考查了矩形的性质,全等三角形的性质和判定,坐标与图形的性质等知识点,解此题的关键是正确分组讨论.三、解答题(共66分)19、(1)70°;(2)当0°<∠BCD<90°时,∠2=70°;当90°≤∠BCD<110°时,∠2=110°;(3)见解析【分析】(1)根据等腰三角形的性质及外角定理即可求解;(2)根据题意分①当时②当时,分别进行求解;(3)先证明是等边三角形,设得到,从而求得在直线上取一点使得,连接得到为等边三角形,再证明,得到≌,根据即可得到.【详解】解:(1)由题意可知,,则∴又∴∴(2)①当时,∴②如图,当时∴(3)∵,∴是等边三角形设则∴如图,在直线上取一点使得,连接则为等边三角形∴即在和中∴∴又∴【点睛】此题主要考查全等三角形的综合题,解题的关键是熟知等边三角形的性质、对称的性质及全等三角形的判定与性质.20、1.【详解】试题分析:由题意先求得∠B=∠C=10°,再由AD⊥AC,求得∠ADC=60°,则∠BAD=10°,然后得出AD=BD.∵AB=AC,∠BAC=120°,∴∠B=∠C=10°,∵AD⊥AC,DC=6,∴AD=CD=1,∠ADC=60°.∴∠B=∠BAD=10°.∴AD=BD=1.考点:1.含10度角的直角三角形;2.等腰三角形的判定与性质.21、(1)画图见解析;(2)画图见解析;(3)三角形的形状为等腰直角三角形.【解析】(1)利用点平移的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1为所作;(2)利用网格特定和旋转的性质画出A、B、C的对应点A2、B2、C2,从而得到△A2B2C2,(3)根据勾股定理逆定理解答即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B==,即OB2+OA12=A1B2,所以三角形的形状为等腰直角三角形.【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22、(1)证明见解析;(2)证明见解析;(3).【解析】(1)先根据点A坐标可得OA的长,再根据即可得证;(2)如图(见解析),延长至点,使得,连接,先根据三角形全等的判定定理与性质可得,再根据直角三角形的性质和得出,然后根据三角形全等的判定定理与性质即可得证;(3)先由题(2)两个三角形全等可得,再根据平行线的性质得出,从而有,然后根据等腰三角形的定义(等角对等边)即可得.【详解】(1),即;(2)如图,延长至点,使得,连接,轴,即;(3)由(2)已证,轴(等角对等边)故答案为:1.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.23、(1);(2);(3)不变化,.【分析】(1)先将分式方程去分母化为整式方程,再求解整式方程,最后检验解是原分式方程的解,即得;(2)先证明,进而可得出,再利用三角形内角和推出,最后利用邻补角的性质即得;(3)先证明,进而得出以及,再根据以上结论以及邻补角对顶角的性质推出,最后根据所对直角边是斜边的一半推出,即得为定值.【详解】(1)∵∴方程两边同时乘以得:解得:检验:当时,∴原分式方程的解为∴点的坐标为.(2)∵、都为等边三角形∴,,∴∴在与中∴∴∵在中,∴∵在中,∴∴∴∵∴.(3)不变化,理由如下:∵、都为等边三角形∴,,∴∴在与中∴∴,∴∵∴∴∵∴∴在中,∴∵A点坐标为∴∴∴为定值9,不变化.【点睛】本题考查等边三角形的性质、全等三角形的性质、含的直角三角形的性质和“手拉手模型”,两个共顶点的顶角相等的等腰三角形构成的图形视作“手拉手模型”,熟练掌握“手拉手模型”及“手拉手模型”的常用结论是解题关键.24、(1)乙车比甲车晚出发1小时;(2)乙车出发1.5小时后追上甲车;(3)在乙车行驶过程中,当t为1或2时,两车相距20千米.【分析】(1)从图像及题意可直接进行解答;(2)设甲车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,乙车离开城的距离(千米)与甲车行驶的时间(小时)之间的函数解析式为,然后根据图像可求出函数解析式,进而联立两个函数关系求解;(3)由(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业园区电梯井道安装项目合同
- 建材厂建设土石方施工协议
- 智慧城市项目延期还款协议
- 海洋工程投标质量保证承诺书
- 教育培训顾问服务合同
- 环卫推广瓦工施工合同范本
- 买卖超市车位协议范本
- 展览展示招投标文件移交
- 环保改造以此合同为准
- 矿山开采总价包干承诺书
- 4.2.1指数函数的概念 课件(共21张PPT)
- 婴幼儿盥洗照料(婴幼儿回应性照护课件)
- 《化学与生活》课程标准
- 能源管理知识培训讲义
- 浙江台州三门县委政法委员会下属事业单位选聘工作人员笔试题库含答案解析
- 老旧小区现状调查调查表
- 生命科学导论(中国农业大学)知到章节答案智慧树2023年
- 医疗机构设置审批及执业许可流程图
- 企业采购管理现状、问题及完善策略-以正泰电器集团为例(论文)
- 心肺复苏及AED的使用
- 数控机床的机械结构
评论
0/150
提交评论