版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
呼和浩特市重点中学2024年中考联考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知点A(0,﹣4),B(8,0)和C(a,﹣a),若过点C的圆的圆心是线段AB的中点,则这个圆的半径的最小值是()A. B. C. D.22.关于x的一元二次方程x2+2x+k+1=0的两个实根x1,x2,满足x1+x2﹣x1x2<﹣1,则k的取值范围在数轴上表示为()A. B.C. D.3.下列说法正确的是()A.某工厂质检员检测某批灯泡的使用寿命采用普查法B.已知一组数据1,a,4,4,9,它的平均数是4,则这组数据的方差是7.6C.12名同学中有两人的出生月份相同是必然事件D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是4.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为()A.15° B.35° C.25° D.45°5.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①abc<0;②2a+b=0;③b2-4ac<0;④9a+3b+c>0;⑤c+8a<0.正确的结论有().A.1个 B.2个 C.3个 D.4个7.已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sin∠AOB=1213.反比例函数y=kx在第一象限图象经过点A,与BC交于点F.S△AOF=A.15 B.13 C.12 D.58.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)9.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2 B.2或3 C.3或4 D.4或510.如图中任意画一个点,落在黑色区域的概率是()A. B. C.π D.50二、填空题(共7小题,每小题3分,满分21分)11.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.12.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.13.一次函数y=kx+b的图像如图所示,则当kx+b>0时,x的取值范围为___________.14.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______15.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________.16.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是cm(结果保留根号).17.点A到⊙O的最小距离为1,最大距离为3,则⊙O的半径长为_____.三、解答题(共7小题,满分69分)18.(10分)如图1所示,点E在弦AB所对的优弧上,且BE为半圆,C是BE上的动点,连接CA、CB,已知AB=4cm,设B、C间的距离为xcm,点C到弦AB所在直线的距离为y1cm,A、C两点间的距离为y2cm.小明根据学习函数的经验,分别对函数y1、y2岁自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.按照下表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值:x/cm0123456y1/cm00.781.762.853.984.954.47y2/cm44.695.265.965.944.47(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1、y2的图象;结合函数图象,解决问题:①连接BE,则BE的长约为cm.②当以A、B、C为顶点组成的三角形是直角三角形时,BC的长度约为cm.19.(5分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.20.(8分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分.(保留作图痕迹,不写作法)21.(10分)已知:AB为⊙O上一点,如图,,,BH与⊙O相切于点B,过点C作BH的平行线交AB于点E.(1)求CE的长;(2)延长CE到F,使,连结BF并延长BF交⊙O于点G,求BG的长;(3)在(2)的条件下,连结GC并延长GC交BH于点D,求证:22.(10分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.23.(12分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF等于多少度.②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(2)如图2,连接CB′,求△CB′F周长的最小值.(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.24.(14分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
首先求得AB的中点D的坐标,然后求得经过点D且垂直于直线y=-x的直线的解析式,然后求得与y=-x的交点坐标,再求得交点与D之间的距离即可.【详解】AB的中点D的坐标是(4,-2),∵C(a,-a)在一次函数y=-x上,∴设过D且与直线y=-x垂直的直线的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,则函数解析式是y=x-1.根据题意得:,解得:,则交点的坐标是(3,-3).则这个圆的半径的最小值是:=.
故选:B【点睛】本题考查了待定系数法求函数的解析式,以及两直线垂直的条件,正确理解C(a,-a),一定在直线y=-x上,是关键.2、D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x的一元二次方程x2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1•x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D.点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.3、B【解析】
分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A.某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B.根据平均数是4求得a的值为2,则方差为[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C.12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D.在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.4、A【解析】
根据等腰三角形的性质以及三角形内角和定理可得∠A=50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D-∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.5、D【解析】解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=33x,∴y=12×AP×PQ=12×x×33当点Q在BC上时,如下图所示:∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=3(1﹣x),∴SΔAPQ=12AP•PQ=12点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.6、C【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】解:抛物线开口向下,得:a<0;抛物线的对称轴为x=-=1,则b=-2a,2a+b=0,b=-2a,故b>0;抛物线交y轴于正半轴,得:c>0.∴abc<0,①正确;2a+b=0,②正确;由图知:抛物线与x轴有两个不同的交点,则△=b2-4ac>0,故③错误;由对称性可知,抛物线与x轴的正半轴的交点横坐标是x=3,所以当x=3时,y=9a+3b+c=0,故④错误;观察图象得当x=-2时,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正确.正确的结论有①②⑤,故选:C【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的表达式求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7、A【解析】
过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.【详解】过点A作AM⊥x轴于点M,如图所示.设OA=a=OB,则,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA•sin∠AOB=1213a,OM=5∴点A的坐标为(513a,12∵四边形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵点A在反比例函数y=kx∴k=52故选A.【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=12S菱形OBCA8、A【解析】
作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.【详解】解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).故选A.【点睛】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.9、A【解析】
连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B′到BC的距离.【详解】解:如图,连接B′D,过点B′作B′M⊥AD于M,∵点B的对应点B′落在∠ADC的角平分线上,∴设DM=B′M=x,则AM=7﹣x,又由折叠的性质知AB=AB′=5,∴在直角△AMB′中,由勾股定理得到:,即,解得x=3或x=4,则点B′到BC的距离为2或1.故选A.【点睛】本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.10、B【解析】
抓住黑白面积相等,根据概率公式可求出概率.【详解】因为,黑白区域面积相等,所以,点落在黑色区域的概率是.故选B【点睛】本题考核知识点:几何概率.解题关键点:分清黑白区域面积关系.二、填空题(共7小题,每小题3分,满分21分)11、【解析】
过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.【详解】如图,过点B作BD⊥AC于D,设AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根据勾股定理得,AC==x,S△ABC=BC•AH=AC•BD,即•2x•2x=•x•BD,解得BC=x,所以,sin∠BAC=.故答案为.12、2【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是16,∴设高为h,则6×2×h=16,解得:h=1.∴它的表面积是:2×1×2+2×6×2+1×6×2=2.13、x>1【解析】分析:题目要求kx+b>0,即一次函数的图像在x轴上方时,观察图象即可得x的取值范围.详解:∵kx+b>0,∴一次函数的图像在x轴上方时,∴x的取值范围为:x>1.故答案为x>1.点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.14、【解析】【分析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=,故答案为y=.【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.15、8【解析】
如图,连接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解决问题.【详解】解:如图,连接OC.∵AB是⊙O切线,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案为8【点睛】本题考查切线的性质、垂径定理、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形,属于中考常考题型.16、24+24【解析】
仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.【详解】解:观察图形得MH=GN=AD=12,HG=AC,AD=DC=12,AC=12,HG=6.梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.故答案为24+24.【点睛】此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.17、1或2【解析】
分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案.【详解】点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为3−1=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.三、解答题(共7小题,满分69分)18、(1)详见解析;(2)详见解析;(3)①6;②6或4.1.【解析】
(1)由题意得出BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,由勾股定理得出BD=BC2-CD2≈0.9367(cm),得出AD=AB(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象即可;(3)①∵BC=6时,CD=AC=4.1,即点C与点E重合,CD与AC重合,BC为直径,得出BE=BC=6即可;②分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6;当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6,由图象可得:BC=4.1.【详解】(1)由表中自变量x的值进行取点、画图、测量,分别得到了y1、y2与x的几组对应值知:BC=3cm时,CD=2.85cm,从点C与点B重合开始,一直到BC=4,CD、AC随着BC的增大而增大,则CD一直与AB的延长线相交,如图1所示:∵CD⊥AB,∴BD=BC2-∴AD=AB+BD=4+0.9367=4.9367(cm),∴AC=CD2补充完整如下表:(2)描出补全后的表中各组数值所对应的点(x,y1),(x,y2),画出函数y1、y2的图象如图2所示:(3)①∵BC=6cm时,CD=AC=4.1cm,即点C与点E重合,CD与AC重合,BC为直径,∴BE=BC=6cm,故答案为:6;②以A、B、C为顶点组成的三角形是直角三角形时,分两种情况:当∠CAB=90°时,AC=CD,即图象y1与y2的交点,由图象可得:BC=6cm;当∠CBA=90°时,BC=AD,由圆的对称性与∠CAB=90°时对称,AC=6cm,由图象可得:BC=4.1cm;综上所述:BC的长度约为6cm或4.1cm;故答案为:6或4.1.【点睛】本题是圆的综合题目,考查了勾股定理、探究试验、函数以及图象、圆的对称性、直角三角形的性质、分类讨论等知识;本题综合性强,理解探究试验、看懂图象是解题的关键.19、∠CMA=35°.【解析】
根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【点睛】本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.20、详见解析【解析】
先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.【详解】如图作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC与△CEB在AB边上的高相同,所以△CEB的面积是△AEC的面积的3倍,即S△AEC∶S△CEB=1∶3.【点睛】本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.21、(1)CE=4;(2)BG=8;(3)证明见解析.【解析】
(1)只要证明△ABC∽△CBE,可得,由此即可解决问题;
(2)连接AG,只要证明△ABG∽△FBE,可得,由BE==4,再求出BF,即可解决问题;
(3)通过计算首先证明CF=FG,推出∠FCG=∠FGC,由CF∥BD,推出∠GCF=∠BDG,推出∠BDG=∠BGD即可证明.【详解】解:(1)∵BH与⊙O相切于点B,∴AB⊥BH,∵BH∥CE,∴CE⊥AB,∵AB是直径,∴∠CEB=∠ACB=90°,∵∠CBE=∠ABC,∴△ABC∽△CBE,∴,∵AC=,∴CE=4.(2)连接AG.∵∠FEB=∠AGB=90°,∠EBF=∠ABG,∴△ABG∽△FBE,∴,∵BE==4,∴BF=,∴,∴BG=8.(3)易知CF=4+=5,∴GF=BG﹣BF=5,∴CF=GF,∴∠FCG=∠FGC,∵CF∥BD,∴∠GCF=∠BDG,∴∠BDG=∠BGD,∴BG=BD.【点睛】本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.22、(1)①30°②见解析(2)BD2+CE2=DE2(3)【解析】
(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴,∵BD=4,∴DM=BD﹣BM=,根据勾股定理得,,∴DE=DF=,故答案为.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.23、(1)①∠BEF=60°;②AB'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.【解析】
(1)①当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=∠BEB′=×120°=60°;②依据AE=B′E,可得∠EAB′=∠EB′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,进而得出EF∥AB′;(2)由折叠可得,CF+B′F=CF+BF=BC=10,依据B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;(3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.【详解】(1)①当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=∠BEB′=×120°=60°,故答案为60;②AB′∥EF,证明:∵点E是AB的中点,∴AE=BE,由折叠可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值为5﹣5,∴△CB′F周长的最小值=10+5﹣5=5+5;(3)如图,连接AB′,易得∠AB′B=90°,将△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 逛超市课件教学课件
- 冲刺一级建造师考试教案案例试题
- 《骆驼寻宝记》教案设计
- 《相互协作的人体器官》教案
- 婚礼活动租赁协议
- 五年级上册艺术教案
- 媒体传播培训合同
- 体育馆观众自行车车棚施工合同
- 天津市菜市场垃圾分类指南
- 能源开发行业薪资管理策略
- 中小学教师如何做课题研究设计课件
- 《1.6.1 余弦定理》说课稿
- 急诊医学测试试题及答案
- 2024年广州铁路(集团)公司招聘468人易考易错模拟试题(共500题)试卷后附参考答案
- 第四单元两、三位数除以一位数(单元测试)-2024-2025学年三年级上册数学苏教版
- 人教版一年级上册数学期末试题及答案
- 浙江省9+1高中联盟2023-2024学年高一上学期11月期中英语试题 含解析
- 2025届高三化学一轮复习 第13讲 铁盐、亚铁盐及其转化 课件
- 【电商企业跨国并购的绩效探析案例:以阿里巴巴并购Lazada为例(论文)14000字】
- 2023年11月软考中级系统集成项目管理工程师下午真题(第二批)
- 云南太阳能资源分析
评论
0/150
提交评论