吉林省长春市吉大尚德学校2025届数学八上期末质量检测试题含解析_第1页
吉林省长春市吉大尚德学校2025届数学八上期末质量检测试题含解析_第2页
吉林省长春市吉大尚德学校2025届数学八上期末质量检测试题含解析_第3页
吉林省长春市吉大尚德学校2025届数学八上期末质量检测试题含解析_第4页
吉林省长春市吉大尚德学校2025届数学八上期末质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市吉大尚德学校2025届数学八上期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在一单位长度为的方格纸上,依如所示的规律,设定点、、、、、、、,连接点、、组成三角形,记为,连接、、组成三角形,记为,连、、组成三角形,记为(为正整数),请你推断,当为时,的面积()A. B. C. D.2.计算:21+79=()A.282.6 B.289 C.354.4 D.3143.若分式有意义,则取值范围是()A. B. C. D.4.8的立方根是()A. B. C.-2 D.25.如图所示在中,边上的高线画法正确的是()A. B.C. D.6.已知,的值为()A. B. C.3 D.97.一次函数上有两点(,),(,),则下列结论成立的是()A. B. C. D.不能确定8.能将三角形面积平分的是三角形的()A.角平分线 B.高 C.中线 D.外角平分线9.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度10.若分式的值为0,则x的值为A.﹣1 B.0 C.2 D.﹣1或211.对一组数据:2,1,3,2,3分析错误的是()A.平均数是2.2 B.方差是4 C.众数是3和2 D.中位数是212.如图,在等边中,是边上一点,连接,将绕点逆时针旋转得到,连接,若,,则有以下四个结论:①是等边三角形;②;③的周长是10;④.其中正确结论的序号是()A.②③④ B.①③④ C.①②④ D.①②③二、填空题(每题4分,共24分)13.如图,等边三角形ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为直线l上一动点,则AD+CD的最小值是________.14.某同学在解关于的分式方程去分母时,由于常数6漏乘了公分母,最后解得.是该同学去分母后得到的整式方程__________的解,据此可求得__________,原分式方程的解为__________.15.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB绕点B顺时针旋转90°至CB,那么点C的坐标是.16.分式有意义的条件是__________.17.如图,已知a∥b,三角板的直角顶点在直线b上.若∠1=40°,则∠2=______度.18.当________时,二次根式有意义.三、解答题(共78分)19.(8分)如图,一次函数y=x+2的图象与x轴和y轴分别交于点A和B,直线y=kx+b经过点B与点C(2,0).(1)点A的坐标为;点B的坐标为;(2)求直线y=kx+b的表达式;(3)在x轴上有一动点M(t,0),过点M做x轴的垂线与直线y=x+2交于点E,与直线y=kx+b交于点F,若EF=OB,求t的值.(4)当点M(t,0)在x轴上移动时,是否存在t的值使得△CEF是直角三角形?若存在,直接写出t的值;若不存在,直接答不存在.20.(8分)先化简,再求值:,其中.21.(8分)先化简,再求值:4(x﹣1)2﹣(2x+3)(2x﹣3),其中x=﹣1.22.(10分)在平面直角坐标系中,的三个顶点坐标分别为,,.(1)画出关于轴对称的;并写出的坐标;(2)是直角三角形吗?说明理由.23.(10分)已知与成正比例,且当时,.(1)求与的函数表达式;(2)当时,求的取值范围.24.(10分)如图,于,交于,,.(1)求证:;(2)求证:;(3)当,时,直接写出线段、的长度.25.(12分)如图,在中,,分别是边,上的点,且.求证:四边形为平行四边形.26.已知:如图,AB=AD,BC=ED,∠B=∠D.求证:∠1=∠1.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据图形计算发现:第一个三角形的面积是,第二个三角形的面积是,第三个图形的面积是,即第个图形的面积是,即可求得,△的面积.【详解】由题意可得规律:第个图形的面积是,所以当为时,的面积.故选:A.【点睛】此题主要考查了点的坐标变化规律,通过计算前面几个具体图形的面积发现规律是解题关键.2、D【分析】利用乘法分配律即可求解.【详解】原式=故选:D.【点睛】本题主要考查乘法运算律在实数运算中的应用,掌握乘法分配律是解题的关键.3、B【分析】根据分式有意义的条件:分母≠0,列出不等式即可求出的取值范围.【详解】解:∵分式有意义,∴解得:故选B.【点睛】此题考查的是分式有意义的条件,掌握分式有意义的条件:分母≠0是解决此题的关键.4、D【解析】根据立方根的定义进行解答.【详解】∵,

∴的立方根是,

故选:D.【点睛】本题主要考查了立方根定义,熟练掌握相关定义是解题的关键.5、B【分析】直接利用高线的概念得出答案.【详解】在中,边上的高线画法正确的是B,故选B.【点睛】此题主要考查了三角形高线的作法,正确把握相关定义是解题关键.6、D【分析】先将因式分解,再将代入,借助积的乘方公式(,本题中为逆运用)和平方差公式()求解即可.【详解】解:,将代入,原式=.故选:D.【点睛】本题考查因式分解的应用,积的乘方公式,平方差公式,二次根式的化简求值.解决此题的关键是①综合利用提公因式法和公式法对原代数式进行因式分解;②利用积的乘方公式和平方差公式对代值后的式子进行适当变形.7、A【分析】首先判断出一次函数的增减性,然后根据A,B点的横坐标可得答案.【详解】解:∵一次函数中,∴y随x的增大而减小,∵2<3,∴,故选:A.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的增减性与k的关系是解题的关键.8、C【解析】试题解析:根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.故选C.考点:1.三角形的中线;2.三角形的面积.9、C【详解】A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.10、C【分析】根据分式值为零的条件可得x﹣2=0,再解方程即可.【详解】解:由题意得:x﹣2=0,且x+1≠0,解得:x=2,故选C.11、B【分析】根据平均数、方差、众数、中位数的定义以及计算公式分别进行解答即可.【详解】解:A、这组数据的平均数是:(2+1+3+2+3)÷5=2.2,故正确;B、这组数据的方差是:[(2−2.2)2+(1−2.2)2+(3−2.2)2+(2−2.2)2+(3−2.2)2]=0.56,故错误;C、3和2都出现了2次,出现的次数最多,则众数是3和2,故正确;D、把这组数据从小到大排列为:1,2,2,3,3,中位数是2,故正确.故选:B.【点睛】此题主要考查了平均数、方差、众数、中位数的含义和求法,熟练掌握定义和求法是解题的关键,是一道基础题12、D【分析】先由△BCD绕点B逆时针旋转60°,得到△BAE,可知:BD=BE,∠DBE=60°,则可判断△BDE是等边三角形;根据等边三角形的性质得BA=BC,∠ABC=∠C=∠BAC=60°,再根据旋转的性质得到∠BAE=∠BCD=60°,从而得∠BAE=∠ABC=60°,根据平行线的判定方法即可得到AE∥BC;根据等边三角形的性质得∠BDE=60°,而∠BDC>60°,则可判断∠ADE≠∠BDC;由△BDE是等边三角形得到DE=BD=4,再利用△BCD绕点B逆时针旋转60°,得到△BAE,则AE=CD,△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=1.【详解】∵△BCD绕点B逆时针旋转60°,得到△BAE,∴BD=BE,∠DBE=60°,∴△BDE是等边三角形,∴①正确;∵△ABC为等边三角形,∴BA=BC,∠ABC=∠C=∠BAC=60°,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴∠BAE=∠BCD=60°,∴∠BAE=∠ABC,∴AE∥BC,∴②正确;∵△BDE是等边三角形,∴DE=BD=4,∵△BCD绕点B逆时针旋转60°,得到△BAE,∴AE=CD,∴△AED的周长=AE+AD+DE=CD+AD+DE=AC+BD=BC+BD=6+4=1,∴③正确;∵△BDE是等边三角形,∴∠BDE=60°,∵∠BDC=∠BAC+∠ABD>60°,∴∠ADE=180°-∠BDE-∠BDC<60°,∴∠ADE≠∠BDC,∴④错误.故选D.【点睛】本题主要考查旋转得性质,等边三角形的判定和性质定理,掌握旋转的性质以及等边三角形的性质定理,是解题的关键.二、填空题(每题4分,共24分)13、【分析】连接CC´,根据△ABC与△A′BC′均为等边三角形即可得到四边形ABC´C为菱形,因为点C关于直线l对称的点是C´,以此确定当点D与点D´重合时,AD+CD的值最小,求出AC´即可.【详解】解:连接CC´,如图所示∵△ABC与△A′BC′均为等边三角形,∴∠A´BC´=∠CAB=60°,AB=BC´=AC,∴AC∥BC´,∴四边形ABC´C为菱形,∴BC⊥AC´,CA=CC´,∠ACC´=180°-∠CAB=120°,∴∠CAC´=(180°-∠ACC´)=(180°-120°)=30°,∴∠C´AB=∠CAB-∠CAC´=30°,∵∠A´=60°,∴∠AC´A´=180°-∠C´AB-∠A´=180°-30°-60°=90°,∵点C关于直线l对称的点是C´,∴当点D与点D´重合时,AD+CD取最小值,∴.故答案为.【点睛】本题考查了轴对称——最短路径问题,等边三角形的性质,菱形的判定与性质,解直角三角形等知识.解题的关键是学会利用轴对称解决问题.14、x-3+6=m;2;【分析】根据题意,常数6没有乘以(x-2),即可得到答案;把代入方程,即可求出m的值;把m的值代入,重新计算原分式方程,即可得到原分式方程的解.【详解】解:根据题意,由于常数6漏乘了公分母,则∴;把代入,得:,解得:;∴,∴,∴,∴.经检验,是原分式方程的解.故答案为:;2;.【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的方法和步骤.注意不要漏乘公分母,解分式方程需要检验.15、.【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB,BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).16、【分析】根据分式的性质即可求出.【详解】∵是分式,∴∴【点睛】此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.17、1【解析】先根据互余计算出∠3=90°-40°=50°,再根据平行线的性质由a∥b得到∠2=180°-∠3=1°.【详解】解:∵∠1+∠3=90°,

∴∠3=90°-40°=50°,

∵a∥b,

∴∠2+∠3=180°.

∴∠2=180°-50°=1°.

故答案是:1.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补.18、≤3【解析】根据二次根式有意义的条件:被开方数为非负数即可得答案.【详解】∵二次根式有意义,∴6-2x≥0,解得:x≤3.故答案为:≤3【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数大于等于0;熟记二次根式有意义的条件是解题关键.三、解答题(共78分)19、(1)点的坐标为,点的坐标为;(2);(3);(4)【分析】(1)分别令和,即可得到点的坐标和点的坐标;(2)把代入中即可解得表达式;(3)根据轴得点的横坐标都是,把分别代入、中,求得,即可求出t的值;(4)存在,根据勾股定理列出方程求解即可.【详解】(1),令,则;令,则,故点的坐标为,点的坐标为(2)把代入,得解得直线的表达式为.(3)轴,点的横坐标都是,把分别代入、,得由题意,(4)C(2,0),F(t,-t+2),E(t,)可得,,由勾股定理得,若△CEF是直角三角形,解出存在的解即可①,即,解得,(舍去);②,即,解得(舍去),(舍去);③,即,解得,(舍去);∴【点睛】本题考查了直线解析式的问题,掌握直线解析式的性质以及勾股定理是解题的关键.20、1【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,代入x的值,计算即可求出值.【详解】解:当时,原式=【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21、化简结果:-8x+13,值为21.【解析】分析:根据整式的混合运算法则将所给的整式化简后,再代入求值即可.详解:原式=4(x2-2x+1)-(4x2-9)=4x2-8x+4-4x2+9=-8x+13当x=-1时,原式=21点睛:本题是整式的化简求值,考查了整式的混合运算,解题时注意运算顺序以及符号的处理.22、(1)图见解析,C1(5,2)(2)是直角三角形,理由见解析【分析】(1)直接根据轴对称的性质画出,并写出的坐标;(2)根据勾股定理即可求解.【详解】(1)如图所示,为所求,C1(5,2);(2)AB=,AC=,BC=,∵AB2=AC2+BC2∴是直角三角形.【点睛】本题考查的是作图−轴对称变换,熟知关于y轴对称的点的坐标特点及勾股定理是解答此题的关键.23、(1)y=2x-4;(2)-6<y<1.【分析】(1)设y=k(x-2),把x=1,y=-2代入求出k值即可;

(2)把x=-1,x=2代入解析式求出相应的y值,然后根据函数的增减性解答即可.【详解】解:(1)因为y与x-2成正比例,可得:y=k(x-2),

把x=1,y=-2代入y=k(x-2),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论