2025届江苏省无锡市和桥区数学八年级第一学期期末质量检测试题含解析_第1页
2025届江苏省无锡市和桥区数学八年级第一学期期末质量检测试题含解析_第2页
2025届江苏省无锡市和桥区数学八年级第一学期期末质量检测试题含解析_第3页
2025届江苏省无锡市和桥区数学八年级第一学期期末质量检测试题含解析_第4页
2025届江苏省无锡市和桥区数学八年级第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省无锡市和桥区数学八年级第一学期期末质量检测试题试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数均是8.9环,方差分别是则成绩最稳定的是().A.甲 B.乙 C.丙 D.丁2.如图,有下列四种结论:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2个结论作为依据不能判定△ABC≌△ADC的是()A.①② B.①③ C.①④ D.②③3.若点在正比例函数的图象上,则下列各点不在正比例函数的图象上的是()A. B. C. D.4.分式和的最简公分母()A. B. C. D.5.已知点、点关于轴对称,点在第()象限A.一 B.二 C.三 D.四6.如图,已知:,点、、…在射线上,点、、…在射线上,、、…均为等边三角形,若,则的边长为()A.6 B.12 C.16 D.327.下列说法正确的是()A.是最简二次根式 B.的立方根不存在C.点在第四象限 D.是一组勾股数8.分式的值为0,则的值是A. B. C. D.9.等腰中,,用尺规作图作出线段BD,则下列结论错误的是()A. B. C. D.的周长10.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.22二、填空题(每小题3分,共24分)11.已知平行四边形的面积是,其中一边的长是,则这边上的高是_____cm.12.一个正数的两个平方根分别是3a+2和a-1.则a的值是_______.13.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的中位数是__________岁.14.如果△ABC的三边长分别为7,5,3,△DEF的三边长分别为2x﹣1,3x﹣2,3,若这两个三角形全等,则x=__________.15.因式分解:3x2-6xy+3y2=______.16.如图,等边△中,于,,点、分别为、上的两个定点且,在上有一动点使最短,则的最小值为_____.17.函数的定义域____.18.已知:如图,中,,外角,则____________________三、解答题(共66分)19.(10分)(1)计算:(2)计算:20.(6分)如图,分别是4×4的正方形网格,请只用无刻度的直尺完成下列作图:(1)在图1中,A,B是网格的格点,请以AB为边作一个正方形;(2)在图2中,A是网格的格点,请以A为一个顶点,B,C,D三点分别在网格的格点上,在网格内作一个面积最大的正方形ABCD.21.(6分)解下列方程组:22.(8分)解方程组:.23.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(1,0),B(2,-3),C(4,-2).(1)画出△ABC关于x轴的对称图形△A1B1C1;(2)画出△A1B1C1向左平移3个单位长度后得到的△A2B2C2;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是______.24.(8分)如图,在平面直角坐标系中,线段AB的两个端点坐标分别为(﹣2,1)和(2,3).(1)在图中分别画出线段AB关于x轴的对称线段A1B1,并写出A1、B1的坐标.(2)在x轴上找一点C,使AC+BC的值最小,在图中作出点C,并直接写出点C的坐标.25.(10分)如图,直线角形与两坐标轴分别交于,直线与轴交于点与直线交于点面积为.(1)求的值(2)直接写出不等式的解集;(3)点在上,如果的面积为4,点的坐标.26.(10分)计算:(1)﹣22×(π﹣3.14)0﹣|﹣5|×(﹣1)2019(2)3x2y2﹣4x3y2÷(﹣2x)+(﹣3xy)2

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据方差是用来衡量一组数据波动大小的量,故由甲、乙、丙、丁的方差可作出判断.【详解】解:由于S丁2<S丙2<S甲2<S乙2,则成绩较稳定的是丁.

故选:D【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2、A【分析】根据全等三角形的判定方法:SSS、SAS、ASA、AAS、HL依次对各选项分析判断即可.【详解】A、由AB=AD,∠B=∠D,虽然AC=AC,但是SSA不能判定△ABC≌△ADC,故A选项与题意相符;B、由①AB=AD,③∠BAC=∠DAC,又AC=AC,根据SAS,能判定△ABC≌△ADC,故B选项与题意不符;C、由①AB=AD,④BC=DC,又AC=AC,根据SSS,能判定△ABC≌△ADC,故C选项与题意不符;D、由②∠B=∠D,③∠BAC=∠DAC,又AC=AC,根据AAS,能判定△ABC≌△ADC,故D选项与题意不符;故选A.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3、D【分析】先根据点A在正比例函数的图象上,求出正比例函数的解析式,再把各点代入函数解析式验证即可.【详解】解:∵点在正比例函数的图象上,,,故函数解析式为:;A、当时,,故此点在正比例函数图象上;B、当时,,故此点在正比例函数图象上;C、当时,,故此点在正比例函数图象上;D、当时,,故此点不在正比例函数图象上;故选:D.【点睛】本题考查的是正比例函数的图象上点的坐标,要明确图象上点的坐标一定适合此函数的解析式是解答此题的关键.4、C【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母,即可得出答案.【详解】=,,所以最简公分母为:.故选:C.【点睛】考查了最简公分母的定义及确定方法,解题关键利用了:确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.5、C【分析】根据点A、点B关于轴对称,求出a,b的值,然后根据象限点的符号特点即可解答.【详解】∵点、点关于轴对称,∴a=3,b=3,∴点P的坐标为,∴点P在第三象限,故答案为:C.【点睛】本题考查了轴对称和象限内点的符号特点,解题的关键是熟练掌握其性质.6、C【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=,得出△A1B1A2的边长为,再依次同理得出:△A2B2A3的边长为1,△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=1.【详解】解:∵△A1B1A2为等边三角形,

∴∠B1A1A2=60°,A1B1=A1A2,

∵∠MON=30°,

∴∠OB1A1=60°-30°=30°,

∴∠MON=∠OB1A1,

∴B1A1=OA1=,

∴△A1B1A2的边长为,

同理得:∠OB2A2=30°,

∴OA2=A2B2=OA1+A1A2=+=1,

∴△A2B2A3的边长为1,

同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=1.故选:C.【点睛】本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.7、C【分析】根据最简二次根式的定义、立方根的性质、坐标和象限的关系、勾股定理即可判断结果.【详解】解:A、=,不是最简二次根式,故选项不符合;B、的立方根是,故选项不符合;C、点在第四象限,正确,故选项符合;D、,不是勾股数,故选项不符合;故选C.【点睛】本题考查了最简二次根式、立方根、坐标和象限、勾股数,解题的关键是正确理解对应概念,属于基础题.8、B【分析】分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.【详解】由式的值为1,得,且.解得.故选:.【点睛】此题考查分式值为1,掌握分式值为1的两个条件是解题的关键.9、C【解析】根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.【详解】解:∵等腰△ABC中,AB=AC,∠A=36°,

∴∠ABC=∠ACB=72°,

由作图痕迹发现BD平分∠ABC,

∴∠A=∠ABD=∠DBC=36°,

∴AD=BD,故A、B正确;

∵AD≠CD,

∴S△ABD=S△BCD错误,故C错误;

△BCD的周长=BC+CD+BD=BC+AC=BC+AB,

故D正确.

故选C.【点睛】本同题考查等腰三角形的性质,能够发现BD是角平分线是解题的关键.10、B【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据平行四边形的面积公式:S=ah,计算即可.【详解】设这条边上的高是h,由题意知,,解得:,故填:.【点睛】本题考查平行四边形面积公式,属于基础题型,牢记公式是关键.12、.【详解】根据题意得:3a+2+a-1=0,解得:a=.考点:平方根.13、【分析】由图得到男子足球队的年龄及对应的人数,再根据中位数的概念即可得答案.【详解】由图可知:13岁的有2人,14岁的有6人,15岁的有8人,16岁的有3人,17岁的有2人,18岁的有1人,∵∵足球队共有队员2+6+8+3+2+1=22人,∴中位数是11名和第12名的平均年龄,∵把这组数据从小到大排列11名和第12名的年龄分别是15岁、15岁,∴这些队员年龄的中位数是15岁,故答案为:15【点睛】本题考查了求一组数据的中位数.求中位数时一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果数据有偶数个,则中间两个数据的平均数就是这组数据的中位数;熟练掌握中位数的等于是解题关键.14、1【分析】根据全等三角形的对应边相等得到且或且,然后分别解两方程求出满足条件的的值.【详解】∵△ABC与△DEF全等,

∴且,解得:,

或且,没有满足条件的的值.

故答案为:1.【点睛】本题考查了全等三角形的性质:全等三角形的对应边相等.注意要分类讨论.15、3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用16、1【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小,最小值PE+PQ=PE+EQ′=PQ′;【详解】解:如图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=3.1cm,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,∵AQ=2cm,AD=DC=3.1cm,∴QD=DQ′=1.1cm,∴CQ′=BP=2cm,∴AP=AQ′=1cm,∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=1cm,∴PE+QE的最小值为:1cm.故答案为1.【点睛】本题考查等边三角形的性质和判定,轴对称的性质,以及最短距离问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.17、.【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x的取值即可.【详解】根据题意得,解得,故答案为:.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.18、65°70°【分析】利用外角性质求出∠C,再利用邻补角定义求出∠ABC.【详解】∵∠ABD=∠A+∠C,,,∴∠C=∠ABD-∠A=65°,∵∠ABC+∠ABD=180,∴∠ABC=180-∠ABD=70°故答案为:65°,70°.【点睛】此题考查外角性质,邻补角定义,会看图找到各角度的关系,由此计算得出所求的角度是解题的关键.三、解答题(共66分)19、(1);(2)1【分析】(1)依次将各式化成最简二次根式,合并即可;(2)按照二次根式性质进行化简,再计算即可.【详解】解:(1)原式=+2﹣=;(2)原式=2×﹣3+×3=1﹣3+2=1.【点睛】本题考查了二次根式的混合加减运算以及实数的混合计算,解答关键是根据法则进行计算.20、(1)见解析;(2)见解析【分析】(1)根据正方形的性质结合网格特点作图即可;(2)利用勾股定理结合网格特点作出一个边长为的正方形即可.【详解】解:(1)如图1中,正方形ABEF即为所求;(2)如图2中,正方形ABCD即为所求.【点睛】本题考查作图﹣应用与设计,正方形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、【分析】将②变形得③,然后将③代入①可求得y的值,最后把y的值代入方程③即可求得x的值,进而得到方程组的解.【详解】解:(1)由②,得,③将③带入①,得,将代入③,得所以原方程组的解为【点睛】本题主要考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,正确掌握解题方法是解题的关键.22、【分析】运用加减消元法求解即可.【详解】解:①②得,解得.将代入②得,解得原方程组的解为【点睛】此题考查了解二元一次方程组,解二元一次方程组有两种方法:代入消元法和加减消元法.23、(1)作图见解析;(2)作图见解析;(3)(m﹣3,﹣n).【解析】(1)直接利用关于轴对称点的性质得出答案;

(2)利用平移规律,找出对应点的位置,顺次连接即可.

(3)接利用平移变换的性质得出点P2的坐标.【详解】(1)解:如图所示:△A1B1C1就是所要求作的图形、(2)△A2B2C2就是所要求作的图形;(3)如果AC上有一点P(m,n)经过上述两次变换,那么对应A2C2上的点P2的坐标是:故答案为(m−3,−n).【点睛】考查了轴对称变换以及平移变换,正确找出对应点是解题的关键.24、(1)图见解析,A1的坐标为(﹣2,﹣1)、B1的坐标为(2,﹣3);(2)图见解析,点C坐标为(﹣1,0)【分析】(1)分别作出点A、B关于x轴的对称点,再连接即可得;(2)连接,与x轴的交点即为所求;再根据点坐标、以及等腰直角三角形的判定与性质可求出OC的长,从而可得点C坐标.【详解】(1)如图所示,即为所求:由点关于x轴对称的坐标变换规律:横坐标不变,纵坐标变为相反数的坐标为,的坐标为;(2)由轴对称的性质得:则要使的值最小,只需的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论