




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南弥勒市2025届八年级数学第一学期期末联考模拟试题试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,.点,,,,在射线上,点,,,,在射线上,,,,均为等边三角形,若,则的边长为()A. B. C. D.2.如图,已知C是线段AB上的任意一点(端点除外),分别以AC、BC为边并且在AB的同一侧作等边△ACD和等边△BCE,连接AE交CD于M,连接BD交CE于N.给出以下三个结论:①AE=BD;②CN=CM;③MN∥AB;④∠CDB=∠NBE.其中正确结论的个数是()A.4 B.3 C.2 D.13.下列命题中,是假命题的是()A.如果一个等腰三角形有两边长分别是1,3,那么三角形的周长为7B.等腰三角形的高、角平分线和中线一定重合C.两个全等三角形的面积一定相等D.有两条边对应相等的两个直角三角形一定全等4.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.25.如果分式的值为零,那么应满足的条件是()A., B., C., D.,6.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样一个问题:“今天有开门去阔一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD和BC),门边缘D,C两点到门槛AB的距离是1尺,两扇门的间隙CD为2寸,则门宽AB长是()寸(1尺=10寸)A.101 B.100 C.52 D.967.将数据0.0000025用科学记数法表示为()A. B. C. D.8.利用形如这个分配性质,求的积的第一步骤是()A. B.C. D.9.下列计算不正确的是()A. B. C. D.10.如图,AD平分,于点E,,DE=2,则AC的长是()A.3 B.4 C.5 D.6二、填空题(每小题3分,共24分)11.已知a+b=3,ab=1,则a2+b2=____________.12.因式分解:=____.13.如图,在中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=13,则的面积是________.14.若代数式在实数范围内有意义,则x的取值范围是_______.15.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H四点不共线.当AC=6,BD=8时,四边形EFGH的周长是_____.16.如图,中,,,,平分,为的中点.若,,则__________.(用含,的式子表示)17.函数中,自变量的取值范围是__________.18.函数的定义域____.三、解答题(共66分)19.(10分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=%,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?20.(6分)如图,点B,F,C,E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.21.(6分)因式分解:(1);(2)22.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4),(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出点B1的坐标;(2)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.23.(8分)如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.24.(8分)课本56页中有这样一道题:证明.如果两个三角形有两条边和其中一边上的中线分别相等,那么这两个三角形全等,(1)小玲在思考这道题时.画出图形,写出已知和求证.已知:在和中,,,是边上的中线,是边上的中线,.求证:.请你帮她完成证明过程.(2)小玲接着提出了两个猜想:①如果两个三角形有两条边和第三边上的中线分别相等,那么这两个三角形全等;②如果两个三角形有两条边和第三边上的高分别相等,那么这两个三角形全等;请你分别判断这两个猜想是否正确,如果正确,请予以证明,如果不正确,请举出反例.25.(10分)某商场销售两种品牌的足球,购买2个品牌和3个品牌的足球共需280元;购买3个品牌和1个品牌的足球共需210元.(1)求这两种品牌足球的单价;(2)开学前,该商场对这两种足球开展了促销活动,具体办法如下:品牌足球按原价的九折销售,品牌足球10个以上超出部分按原价的七折销售.设购买个品牌的足球需要元,购买个品牌的足球需要元,分别求出,关于的函数关系式.(3)某校准备集体购买同一品牌的足球,若购买足球的数量为15个,购买哪种品牌的足球更合算?请说明理由.26.(10分)如图,在中,是边上的高,,分别是和的角平分线,它们相交于点,.求的度数.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据等边三角形的性质和,可求得,进而证得是等腰三角形,可求得的长,同理可得是等腰三角形,可得,同理得规律,即可求得结果.【详解】解:∵,是等边三角形,∴,∴,∴,则是等腰三角形,∴,∵,∴=1,,同理可得是等腰三角形,可得=2,同理得、,根据以上规律可得:,即的边长为,故选:B.【点睛】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.2、A【分析】根据题目中的已知信息,判定出△ACE≌△DCB,即可证明①正确;判定△ACM≌△DCN,即可证明②正确;证明∠NMC=∠ACD,即可证明③正确;分别判断在△DCN和△BNE各个角度之间之间的关系,即可证明④正确.【详解】∵△ACD和△BCE是等边三角形∴∠ACD=∠BCE=60°,AC=DC,EC=BC∴∠ACD+∠DCE=∠DCE+∠ECB即∠ACE=∠DCB∴△ACE≌△DCB(SAS)∴AE=BD,故①正确;∴∠EAC=∠NDC∵∠ACD=∠BCE=60°∴∠DCE=60°∴∠ACD=∠MCN=60°∵AC=DC∴△ACM≌△DCN(ASA)∴CM=CN,故②正确;又∠MCN=180°-∠MCA-∠NCB=180°-60°-60°=60°∴△CMN是等边三角形∴∠NMC=∠ACD=60°∴MN∥AB,故③正确;在△DCN和△BNE,∠DNC+∠DCN+∠CDB=180°∠ENB+∠CEB+∠NBE=180°∵∠DNC=∠ENB,∠DCN=∠CEB∴∠CDB=∠NBE,故④正确.故选:A.【点睛】本题主要考查了根据已知条件判定三角形全等以及三角形的内角和,其中灵活运用等边三角形的性质是解题的关键,属于中等题.3、B【分析】根据等腰三角形及等边三角形的性质即可一一判断.【详解】A、正确.一个等腰三角形有两边长分别是1,3,那么三角形的边长为1,3,3周长为7;B、等腰三角形底边上的高,中线和顶角的平分线重合,故本项错误;C、正确.两个全等三角形的面积一定相等;D、正确.有两条边对应相等的两个直角三角形一定全等;故选B.4、B【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【详解】解:AD是△ABC中∠BAC的平分线,∠EAD=∠FADDE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE,又∵S△ABC=S△ABD+S△ACD,DE=2,AB=4,∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.5、A【分析】根据分子等于零,且分母不等于零列式求解即可.【详解】由题意得a-1=0且1a+b≠0,解得a=1,b≠-1.故选A.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.6、A【分析】根据勾股定理列方程求出AO,即可得到结论.【详解】解:设单门的宽度AO是x尺,根据勾股定理,得x2=1+(x-0.1)2,解得x=5.05,故AB=2AO=10.1尺=101寸,故答案为:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.7、D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:.故选:.【点睛】此题考查科学记数法,解题关键在于掌握其一般形式.8、A【分析】把3x+2看成一整体,再根据乘法分配律计算即可.【详解】解:的积的第一步骤是.故选:A.【点睛】本题主要考查了多项式乘多项式的运算,把3x+2看成整体是关键,注意根据题意不要把x-5看成整体.9、A【分析】根据无理数的混合运算法则,逐一计算,即可判定.【详解】A选项,,错误;B选项,,正确;C选项,,正确;D选项,,正确;故答案为A.【点睛】此题主要考查无理数的混合运算,熟练掌握运算法则,即可解题.10、B【分析】过点D作DF⊥AC于F,然后利用△ACD的面积公式列式计算即可得解.【详解】过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=2,∴S△ACD===1,解得AC=1.故选:B.【点睛】本题考查了角平分线的性质定理,熟练掌握性质定理并作辅助线是解题的关键.二、填空题(每小题3分,共24分)11、7【解析】试题解析:故答案为7.12、【分析】根据平方差公式:因式分解即可.【详解】解:==故答案为:.【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.13、1【分析】先根据作图过程可得AP为的角平分线,再根据角平分线的性质可得点D到AB的距离,然后根据三角形的面积公式即可得.【详解】由题意得:AP为的角平分线点D到AB的距离为4,即的边AB上的高为4则的面积是故答案为:1.【点睛】本题考查了角平分线的作图过程与性质,熟记角平分线的性质是解题关键.14、【解析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.解:∵在实数范围内有意义,∴x-1≥2,解得x≥1.故答案为x≥1.本题考查的是二次根式有意义的条件,即被开方数大于等于2.15、14【分析】根据三角形中位线定理得到FG∥EH,FG=EH,根据平行四边形的判定定理和周长解答即可.【详解】∵F,G分别为BC,CD的中点,∴FG=BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为14【点睛】本题考查的是三角形中位线定理,掌握三角形中位线定理和平行四边形的判定定理是解题的关键.16、【分析】根据等边三角形的判定,在边CA上截取CT=CB,连接BT,得是等边三角形,由等边三角形的性质,是角平分线,也是底边的中垂线,可得,由外角性质证明为等腰三角形,得到,过点F作,知为的中位线,,可求得.【详解】在边CA上截取CT=CB,连接BT,DT,过点F作,连接EH,,,是等边三角形,,平分,垂直平分BT,DT=DB,,是的外角,,,,,,又为的中点,,,,,,,,,为的中位线,.故答案为:.【点睛】考查了等边三角形的判定、性质,等腰三角形的判定性质,中垂线的判定和性质,以及外角的性质和三角形中位线的性质,熟记三角形的性质,判定定理是解决几何图形题的关键.17、x≥0且x≠1【分析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】解:由题意得,x≥0且x−1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.18、.【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x的取值即可.【详解】根据题意得,解得,故答案为:.【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.三、解答题(共66分)19、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20、见解析;【解析】首先根据平行线的性质可得∠ACB=∠DFE,再根据ASA定理证明△ABC≌△DEF即可.【详解】证明:∵AC∥DF,∴∠ACB=∠DFE.在△ABC和△DEF中,∠A=∠D,AC=DF,∠ACB=∠DFE,∴△ABC≌△DEF.(ASA)【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21、(1);(2)【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解因式即可.【详解】解:(1)(2)【点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22、(1)详见解析,B1的坐标为(﹣4,2);(2)(2,0).【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作点A关于x轴的对称点,再连接A′B,与x轴的交点即为所求.【详解】(1)如图所示,△A1B1C1即为所求,其中点B1的坐标为(﹣4,2).(2)如图所示,点P即为所求,其坐标为(2,0).【点睛】本题考查了坐标轴画图的问题,掌握坐标轴的性质以及关于y轴对称的点的性质是解题的关键.23、(1)∠BED=2∠BFD;(2)∠BED=3∠BFD,见解析;(3)∠BED=n∠BFD.【分析】(1)过点E,F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,根据平行线的性质得到∠ABF=∠BFH,∠CDF=∠DFH,从而得出∠BFD=∠CDF+∠ABF,同理可得出∠BED=∠ABE+∠CDE,最后可得出∠BED=2∠BFD;(2)同(1)可知∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,再根据∠ABF=∠ABE,∠CDF=∠CDE即可得到结论;(3)同(1)(2)的方法即可得出∠F与∠E的等量关系.【详解】解:(1)过点E、F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=2∠BFD.故答案为:∠BED=2∠BFD;(2)∠BED=3∠BFD.证明如下:同(1)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)同(1)(2)可得,∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,∵∠ABF=∠ABE,∠CDF=∠CDE,∴∠BFD=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=n∠BFD.【点睛】本题主要考查了平行线的性质和角平分线、n等分线的运用,解决问题的关键是作辅助线构造内错角,依据平行线的性质进行推导计算,解题时注意类比思想和整体思想的运用.24、(1)见解析;(2)命题①正确,证明见解析;命题②不正确,反例见解析【分析】(1)先利用“SSS”证明,推出,再根据“SAS”即可证明;(2)①延长到,使,连接,延长到,使,连接.先利用“SAS”证明,推出,,同理推出,,再利用“SSS”证明,即可根据“SAS”证明结论正确;②如图3、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 神经内科护理安全及对策讲课件
- 搞笑课件名称
- 纳税实务 试卷及答案 共5套
- 中医内科学:胃痛讲课件
- Photoshop图形图像处理教程第1章(6)章节
- DB43-T 2762-2023 茶饮品加工技术规范
- 我是护士的讲课件
- 10古诗三首《石灰吟》教学课件-2024-2025学年语文六年级下册统编版
- 2024年包装印刷机械资金筹措计划书代可行性研究报告
- 小儿轮状病毒的治疗与护理讲课件
- 【8物(沪科版)】合肥市第四十五中学2023-2024学年八年级下学期期末物理试题
- 国家开放大学(浙江)地域文化(本)作业1-5
- 福建省龙岩市名校中考数学模拟预测题及答案解析
- 会所会员管理制度
- 生计船管理方案
- 湖南省长沙市芙蓉区2022-2023学年一年级下学期期末测试数学试卷
- GB/T 43650-2024野生动物及其制品DNA物种鉴定技术规程
- GB/T 748-2023抗硫酸盐硅酸盐水泥
- 改革开放与新时代智慧树知到期末考试答案2024年
- CorelDRAW实例教程(CorelDRAW 2020)全套教学课件
- 心肌梗死护理教学查房
评论
0/150
提交评论