吉林省农安县三宝中学2025届数学八上期末监测模拟试题含解析_第1页
吉林省农安县三宝中学2025届数学八上期末监测模拟试题含解析_第2页
吉林省农安县三宝中学2025届数学八上期末监测模拟试题含解析_第3页
吉林省农安县三宝中学2025届数学八上期末监测模拟试题含解析_第4页
吉林省农安县三宝中学2025届数学八上期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省农安县三宝中学2025届数学八上期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是().A. B. C. D.2.已知,,则代数式的值是()A.6 B.﹣1 C.﹣5 D.﹣63.关于的方程的两个解为;的两个解为;的两个解为,则关于的方程的两个解为()A. B.C. D.4.若m+=5,则m2+的结果是()A.23 B.8 C.3 D.75.若,则的值为()A. B.-3 C. D.36.某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A.最高分 B.中位数 C.方差 D.平均数7.如图,△ABO关于x轴对称,若点A的坐标为(a,b),则点B的坐标为()A.(b,a) B.(﹣a,b) C.(a,﹣b) D.(﹣a,﹣b)8.在平面直角坐标系中,点P(﹣3,1)关于y轴对称点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.下列各式是最简分式的是()A. B.C. D.10.分式的值为,则的值为()A. B. C. D.无法确定二、填空题(每小题3分,共24分)11.如图,点E为∠BAD和∠BCD平分线的交点,且∠B=40°,∠D=30°,则∠E=_____.12.把一个等腰直角三角板放在黑板上画好了的平面直角坐标系内,如图,已知直角顶点A的坐标为(0,1),另一个顶点B的坐标为(﹣5,5),则点C的坐标为________.13.中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学记数法表示为.14.如图,网格纸上每个小正方形的边长为1,点,点均在格点上,点为轴上任意一点,则=____________;周长的最小值为_______________.15.比较大小______5(填“>”或“<”).16.当__________时,分式的值等于零.17.当________时,分式无意义.18.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成条形统计图如图,由此可估计该校2000名学生中有______名学生是乘车上学的.三、解答题(共66分)19.(10分)如图,点、是线段上的点,,,垂足分别是点和点,,,求证:.20.(6分)如图,小区有一块四边形空地,其中.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点作了垂直于的小路.经测量,,,.(1)求这块空地的面积;(2)求小路的长.(答案可含根号)21.(6分)如图,“丰收1号”小麦的试验田是边长为米的正方形去掉一个边长为2米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为米的正方形,两块试验田的小麦都收获了.(1)哪种小麦的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?22.(8分)如图,BN是等腰Rt△ABC的外角∠CBM内部的一条射线,∠ABC=90°,AB=CB,点C关于BN的对称点为D,连接AD,BD,CD,其中CD,AD分别交射线BN于点E,P.(1)依题意补全图形;(2)若∠CBN=α,求∠BDA的大小(用含α的式子表示);(3)用等式表示线段PB,PA与PE之间的数量关系,并证明.23.(8分)数学课上,李老师出示了如下的题目:如图1,在等边中,点在上,点在的延长线上,且,试确定线段与的大小关系,并说明理由,(1)小敏与同桌小聪探究解答的思路如下:①特殊情况,探索结论,当点为的中点时,如图2,确定线段与的大小关系,请你直接写出结论:______.(填>,<或=)②特例启发,解答题目,解:题目中,与的大小关系是:______.(填>,<或=)理由如下:如图3,过点作,交于点,(请你补充完成解答过程)(2)拓展结论,设计新题,同学小敏解答后,提出了新的问题:在等边中,点在直线上,点在直线上,且,已知的边长为,求的长?(请直接写出结果)24.(8分)如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E、F为垂足,且BE=CF.求证:△ABC是等腰三角形.25.(10分)如图,已知∠AOB和点C,D.求作:点P,使得点P到∠AOB两边的距离相等,且PC=PD.(要求:用直尺与圆规作图,保留作图痕迹)26.(10分)()问题发现:如图①,与是等边三角形,且点,,在同一直线上,连接,求的度数,并确定线段与的数量关系.()拓展探究:如图②,与都是等腰直角三角形,,且点,,在同一直线上,于点,连接,求的度数,并确定线段,,之间的数量关系.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据中心对称图形定义分析.【详解】A.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;D∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选C.【点睛】考点:中心对称图形.2、D【分析】将代数式提公因式,即可变形为,代入对应的值即可求出答案.【详解】解:==3×(-2)=-6故选:D.【点睛】本题主要考查了因式分解,熟练提公因式以及整体代入求值是解决本题的关键.3、D【分析】根据题意可得:的两个解为,然后把所求的方程变形为:的形式,再根据上述规律求解即可.【详解】解:根据题意,得:的两个解为,∵方程即为:,∴的解为:或,解得:,.故选:D.【点睛】本题考查了分式方程的解法,解题时要注意给出的例子中的方程与解的规律,还要注意套用例子中的规律时,要保证所求方程与例子中的方程的形式一致.4、A【解析】因为m+=5,所以m2+=(m+)2﹣2=25﹣2=23,故选A.5、D【分析】根据绝对值和算术平方根非负数性质进行化简即可.【详解】因为所以故选:D【点睛】考核知识点:二次根式.理解二次根式的意义,利用算术平方根非负数性质解决问题是关键点.6、B【解析】试题分析:共有25名学生参加预赛,取前13名,所以小颖需要知道自己的成绩是否进入前13,我们把所有同学的成绩按大小顺序排列,第13名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.考点:统计量的选择.7、C【分析】由于△ABO关于x轴对称,所以点B与点A关于x轴对称.根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点:关于x轴对称的点,横坐标相同,纵坐标互为相反数,得出结果.【详解】由题意,可知点B与点A关于x轴对称,又∵点A的坐标为(a,b),∴点B的坐标为(a,−b).故选:C.【点睛】本题考查了平面直角坐标系中关于x轴成轴对称的两点的坐标之间的关系.能够根据题意得出点B与点A关于x轴对称是解题的关键.8、A【解析】直接利用关于y轴对称点的性质进而得出答案.【详解】解:点P(﹣3,1)关于y轴对称点坐标为:(3,1),则(3,1)在第一象限.故选:A.【点睛】本题考查了坐标平面内的轴对称变换,关于x轴对称的两点,横坐标相同,纵坐标互为相反数;关于y轴对称的两点,纵坐标相同,横坐标互为相反数;关于原点对称的两点,横坐标和纵坐标都互为相反数.9、B【分析】依次化简各分式,判断即可.【详解】A、,选项错误;B、无法再化简,选项正确;C、,选项错误;D、,选项错误;故选B.【点睛】本题是对最简分式的考查,熟练掌握分式化简是解决本题的关键.10、B【解析】根据分式的值等于1时,分子等于1且分母不为1,即可解出的值.【详解】解:分式的值为1,且.故选:B.【点睛】本题是已知分式的值求未知数的值,这里注意到分式有意义,分母不为1.二、填空题(每小题3分,共24分)11、35°.【分析】根据两个三角形的有一对对顶角相等得:∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,两式相加后,再根据角平分线的定义可得结论.【详解】解:∵∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,∴∠D+∠DCE+∠B+∠EAB=2∠E+∠DAE+∠ECB,∵EC平分∠ECB,AE平分∠BAD,∴∠DCE=∠ECB,∠DAE=∠BAE,∴2∠E=∠B+∠D,∴∠E=(∠B+∠D)∴∠E=(30°+40°)=×70°=35°;故答案为:35°;【点睛】此题考查了三角形内角和定理、角平分线的定义,掌握角平分线的定义和等量代换是解决问题的关键.12、(﹣4,﹣4)【分析】如图,过点B、C分别作BG⊥y轴、CH⊥y轴,先根据AAS证明△ABG≌△CAH,从而可得AG=CH,BG=AH,再根据A、B两点的坐标即可求出OH、CH的长,继而可得点C的坐标.【详解】解:过点B、C分别作BG⊥y轴、CH⊥y轴,垂足分别为G、H,则∠AGB=∠CHA=90°,∠ABG+∠BAG=90°,∵∠BAC=90°,∴∠CAH+∠BAG=90°,∴∠ABG=∠CAH,又∵AB=AC,∴△ABG≌△CAH(AAS).∴AG=CH,BG=AH,∵A(0,1),∴OA=1,∵B(﹣5,5),∴BG=5,OG=5,∴AH=5,AG=OG-OA=5-1=4,∴CH=4,OH=AH-OA=5-1=4,∴点C的坐标为(―4,―4).故答案为(―4,―4).【点睛】本题以平面直角坐标系为载体,考查了等腰直角三角形的性质和全等三角形的判定与性质,难度不大,属于基础题型,过点B、C分别作BG⊥y轴、CH⊥y轴构造全等三角形是解题的关键.13、1.5×10-1【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015=1.5×10﹣1,故答案为1.5×10﹣1.考点:科学记数法—表示较小的数.14、+【分析】根据勾股定理可计算出AC的长,再找出点A关于x轴对称点,利用两点之间线段最短得出△PAC周长最小值.【详解】解:如图,AC==,作点A关于x轴对称的点A1,再连接A1C,此时与x轴的交点即为点P,此时A1C的长即为AP+CP的最小值,A1C==,∴△PAC周长的最小值为:A1C+AC=+.故答案为:,+.【点睛】本题考查了作图-轴对称变换、最短路线问题,解决本题的关键是正确得出对应点位置.15、<【分析】根据算术平方根的意义,将写成,将5写成,然后再进行大小比较.【详解】解:∵,又∵,∴,即.故答案为:<.【点睛】本题考查实数的大小比较,掌握算术平方根的意义正确将写成,将5写成,是本题的解题关键.16、-2【分析】令分子为0,分母不为0即可求解.【详解】依题意得x2-4=0,x-2≠0,解得x=-2,故填:-2.【点睛】此题主要考查分式的值,解题的关键是熟知分式的性质.17、=1【解析】分式的分母等于0时,分式无意义.【详解】解:当即时,分式无意义.故答案为:【点睛】本题考查了分式无意义的条件,理解分式有意义无意义的条件是解题的关键.18、260【详解】,故答案为:260.三、解答题(共66分)19、见解析【分析】先根据“HL”证明△ADE≌△BCF,可证∠A=∠B,然后根据内错角相等,两直线平行即可解答.【详解】∵,,∴∠D=∠C=90°.∵,∴AE=BF.在△ADE和△BCF中,∵AE=BF,,∴△ADE≌△BCF(HL),∴∠A=∠B,∴.【点睛】本题主要考查了平行线的判定,全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.20、(1)(2+14)m2;(2)【分析】(1)根据AB和BC算出AC的长,再由AD和CD的长得出△ACD是直角三角形,分别算出△ABC和△ACD的面积即可;(2)利用三角形面积的两种不同表示方法,即×AB×AC=×BC×AE可得AE的长.【详解】解:(1)∵AB⊥AC,AB=4,BC=9,∴在△ABC中,==,∵CD=4,AD=7,,即:,∴空地ABCD的面积=S△ABC+S△ADC=×AB×AC+×AD×CD=(2+14)m2;(2)在△ABC中,S△ABC=×AB×AC=×BC×AE,可得AB×AC=BC×AE,即4×=9×AE解得AE=.答:小路AE的长为m.【点睛】本题考查了勾股定理及其逆定理,用勾股定理求出直角三角形第三边长,用逆定理判定三角形为直角三角形是解题的关键,同时会利用三角形面积算法求直角三角形斜边上的高.21、(1)丰收2号;(2).【分析】(1)根据题意可以求得两块试验田的面积,从而可以求得哪种小麦的单位面积产量高;(2)根据“高的单位面积产量除以低的单位面积产量”进行计算求解即可.【详解】(1)“丰收1号”小麦的试验田面积是,单位面积产量是“丰收2号”小麦的试验田面积是,单位面积产量是,∴∴所以“丰收2号”小麦的单位面积产量高.(2)所以,“丰收2号”小麦的单位面积产量是“丰收1号”小麦的单位面积产量的倍.【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.22、(1)补图见解析;(2)45°-α;(3)PA=2(PB+PE)..【解析】此题涉及的知识点是对称点的画法,角大小的求解,数量关系的证明,解答时第一问根据已知条件直接画图,连线;第二问根据对称图形性质可以算出角的大小;第三问证明两三角形全等就可以得到线段之间的关系。【详解】解:(1)如图所示:(2)∵∠ABC=90°∴∠MBC=∠ABC=90°∵点C关于BN的对称点为D∴BC=BD,∠CBN=∠DBN=α∵AB=BC∴AB=BD∴∠BAD=∠ADB=12180°-(3)猜想:PA=证明:过点B作BQ⊥BE交AD于Q∵∠BPA=∠DBN+∠ADB,∠ADB=45°-α,∠DBN=α∴∠BPA=∠DPE=45°∵点C关于BN的对称点为D∴BE⊥CD∴PD=2PE,PQ=2PB,∵BQ⊥BE,∠BPA=45°∴∠BPA=∠BQP=45°∴∠AQB=∠DPB=135°又∵AB=BD,∠BAD=∠ADB∴△AQB≌△BPD(AAS)∴AQ=PD∵PA=AQ+PQ∴PA=【点睛】此题重点考察学生对对称图形性质的理解,三角形全等的判定,抓住对称图形性质熟悉全等三角形的判定是解题的关键。23、(1)①AE=DB;②=;理由见解析;(2)2或1.【分析】(1)①根据等边三角形性质和等腰三角形的性质求出=求出DB=BE,进而得出AE=DB即可;②根据题意结合平行线性质利用全等三角形的判定证得△BDE≌△FEC,求出AE=EF进而得到AE=DB即可;(2)根据题意分两种情况讨论,一种是点在线段上另一种是点在线段的反向延长线上进行分析即可.【详解】解:(1)①∵为等边三角形,点为的中点,∴,,∵,∴,得出,即有,∴,∴AE=DB.②AE=DB,理由如下:作EF//BC,交AB于E,AC于F,∵EF//BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACF=60°,∠1=∠2,∴∠1=∠5=120°,∵EC=ED,∴∠2=∠3,∴∠1=∠3,在△BDE和△FEC中,,∴△BDE≌△FEC,∴DB=EF,∵∠A=∠AEF=∠AFE=60°,∴△AEF为等边三角形,∴AE=EF,∴AE=DB.(2)第一种情况:假设点在线段上,并作EF//BC,交AB于E,AC于F,如图所示:根据②可知AE=DB,∵在等边中,的边长为,∴AE=DB=1,∴;第二种情况:假设点在线段的反向延长线上,如图所示:根据②的结论可知AE=DB,∵在等边中,的边长为,∴;综上所述CD的长为2或1.【点睛】本题综合考查等边三角形的性质和判定和等腰三角形的性质以及全等三角形的性质和判定等知识点的应用,解题的关键是构造全等的三角形进行分析.24、见解析.【分析】由于DE⊥AB,DF⊥AC,那么∠DEB=∠DFC=90°

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论