2025届江苏省靖江市第三中学八年级数学第一学期期末教学质量检测试题含解析_第1页
2025届江苏省靖江市第三中学八年级数学第一学期期末教学质量检测试题含解析_第2页
2025届江苏省靖江市第三中学八年级数学第一学期期末教学质量检测试题含解析_第3页
2025届江苏省靖江市第三中学八年级数学第一学期期末教学质量检测试题含解析_第4页
2025届江苏省靖江市第三中学八年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省靖江市第三中学八年级数学第一学期期末教学质量检测试题量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是,则图中四个小正方形的面积之和是()A. B. C. D.不能确定2.如图,已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,下列画法中错误的是()A. B.C. D.3.若a+b=3,ab=2,则a2+b2的值是()A.2.5 B.5 C.10 D.154.将平面直角坐标系内某个图形上各点的横坐标都乘以-1,纵坐标不变,所得图形与原图形的关系是A.关于x轴对称 B.关于y轴对称 C.关于原点对称 D.两图形重合5.如图将直尺与含30°角的三角尺摆放在一起,若,则的度数是()A. B. C. D.6.把分式约分得()A. B. C. D.7.已知的三边长为满足条件,则的形状为()A.等腰三角形 B.等腰直角三角形C.等边三角形 D.等腰三角形或直角三角形8.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数可能是()A.10,11,12 B.11,10C.8,9,10 D.9,109.的三边长分别为,下列条件:①;②;③;④.其中能判断是直角三角形的个数有()A.1个 B.2个 C.3个 D.4个10.若中刚好有,则称此三角形为“可爱三角形”,并且称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是().A.或 B.或 C.或 D.或或二、填空题(每小题3分,共24分)11.如图,AB⊥BC于B,DC⊥BC于C,AB=6,BC=8,CD=2,点P为BC边上一动点,当BP=________时,形成的Rt△ABP与Rt△PCD全等.12.大家一定熟知杨辉三角(Ⅰ),观察下列等式(Ⅱ)根据前面各式规律,则.13.如图所示的数轴上,点与点关于点对称,、两点对应的实数是和,则线段的长为_____________.14.已知是完全平方式,则__________.15.如图,中,∠C=90°,AD平分∠CAB交BC于点D,DE⊥AB于点E,如果AC=6cm,BC=8cm,那么的周长为_________cm.16.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b、c,若a+b-c=1.s表示Rt△ABC的面积,l表示Rt△ABC的周长,则________.17.已知a2+b2=18,ab=﹣1,则a+b=____.18.如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有个.三、解答题(共66分)19.(10分)如图,在锐角三角形ABC中,AB=13,AC=15,点D是BC边上一点,BD=5,AD=12,求BC的长度.20.(6分)如图,直角坐标系中,一次函数的图像分别与、轴交于两点,正比例函数的图像与交于点.(1)求的值及的解析式;(2)求的值;(3)在坐标轴上找一点,使以为腰的为等腰三角形,请直接写出点的坐标.21.(6分)建立模型:如图1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直线ED经过点B,过A作AD⊥ED于D,过C作CE⊥ED于E.则易证△ADB≌△BEC.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段AB和直角∠ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.模型应用:(1)如图2,点A(0,4),点B(3,0),△ABC是等腰直角三角形.①若∠ABC=90°,且点C在第一象限,求点C的坐标;②若AB为直角边,求点C的坐标;(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PN=n,已知点G在第一象限,且是直线y=2x一6上的一点,若△MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标.22.(8分)在一次军事演习中,红方侦查员发现蓝方的指挥部P设在S区.到公路a与公路b的距离相等,并且到水井M与小树N的距离也相等,请你帮助侦查员在图上标出蓝方指挥部P的位置.(不写作法,保留作图痕迹)23.(8分)(1)分解下列因式,将结果直接写在横线上:x2+4x+4=,16x2+24x+9=,9x2﹣12x+4=(2)观察以上三个多项式的系数,有42=4×1×4,242=4×16×9,(﹣12)2=4×9×4,于是小明猜测:若多项式ax2+bx+c(a>0)是完全平方式,则实数系数a、b、c一定存在某种关系.①请你用数学式子表示a、b、c之间的关系;②解决问题:若多项式x2﹣2(m﹣3)x+(10﹣6m)是一个完全平方式,求m的值.24.(8分)如图,对于边长为2的等边三角形,请建立适当的平面直角坐标系,并写出各个顶点的坐标.25.(10分)如图,D是等边△ABC的AB边上的一动点(不与端点A、B重合),以CD为一边向上作等边△EDC,连接AE.(1)无论D点运动到什么位置,图中总有一对全等的三角形,请找出这一对三角形,并证明你得出的结论;(2)D点在运动过程中,直线AE与BC始终保持怎样的位置关系?并说明理由.26.(10分)已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B,C不重合),如图1,求证:CF=BD;(2)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据正方形的面积公式求出最大的正方形的面积,根据勾股定理计算即可.【详解】∵最大的正方形边长为∴最大的正方形面积为由勾股定理得,四个小正方形的面积之和正方形E、F的面积之和最大的正方形的面积故答案选A.【点睛】本题考查了正方形面积运算和勾股定理,懂得运用勾股定理来表示正方形的面积间的等量关系是解题的关键.2、A【分析】根据经过直线外一点作已知直线的方法即可判断.【详解】解:已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,画法正确的是B、C、D选项,不符合题意.A选项错误,符合题意;故选:A.【点睛】本题考查了作图基本作图,解决本题的关键是掌握经过一点作已知直线的垂线的方法.3、B【详解】解:∵a+b=3,ab=2,∴a2+b2=(a+b)2-2ab=32-2×2=1.故选B.4、B【解析】在坐标系中,点的坐标关于y轴对称则纵坐标不变,横坐标变为原坐标的相反数,题中纵坐标不变,横坐标都乘以-1,变为原来的数的相反数,所以关于y坐标轴对称,故B正确.5、C【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【详解】如图,∵∠BEF是△AEF的外角,∠1=20,∠F=30,

∴∠BEF=∠1+∠F=50,

∵AB∥CD,

∴∠2=∠BEF=50,

故选:C.【点睛】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.6、D【分析】首先提取分母的公因式,然后约去分子分母的公因式即可【详解】,故答案选D【点睛】此题主要考察了分式的约分,关键是正确确定分子分母的公因式7、D【分析】把所给的等式能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】由,得因为已知的三边长为所以所以=0,或,即,或所以的形状为等腰三角形或直角三角形故选:D【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.8、A【解析】先根据多边形的内角和公式(n-2)•180°求出截去一个角后的多边形的边数,再根据截去一个角后边数增加1,不变,减少1讨论得解.【详解】设多边形截去一个角的边数为n,则(n−2)⋅180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选A.【点睛】此题考查多边形内角与外角,解题关键在于掌握计算公式.9、C【分析】根据直角三角形的定义,勾股定理的逆定理一一判断即可.【详解】解:①∠A=∠B-∠C,可得:∠B=90°,是直角三角形;

②∠A:∠B:∠C=3:4:5,可得:∠C=75°,不是直角三角形;

③a2=(b+c)(b-c),可得:a2+c2=b2,是直角三角形;

④a:b:c=5:12:13,可得:a2+b2=c2,是直角三角形;∴是直角三角形的有3个;故选:C.【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算.10、C【分析】根据三角形内角和为180°且等腰三角形的两个底角相等,再结合题中一个角是另一个角的2倍即可求解.【详解】解:由题意可知:设这个等腰三角形为△ABC,且,情况一:当∠B是底角时,则另一底角为∠A,且∠A=∠B=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴5∠C=180°,∴∠C=36°,∠A=∠B=72°,此时可爱角为∠A=72°,情况二:当∠C是底角,则另一底角为∠A,且∠B=2∠A=2∠C,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴4∠C=180°,即∠C=45°,此时可爱角为∠A=45°,故选:C.【点睛】本题借助三角形内角和考查了新定义题型,关键是读懂题目意思,熟练掌握等腰三角形的两底角相等及三角形内角和为180°.二、填空题(每小题3分,共24分)11、1【分析】当BP=1时,Rt△ABP≌Rt△PCD,由BC=8可得CP=6,进而可得AB=CP,BP=CD,再结合AB⊥BC、DC⊥BC可得∠B=∠C=90°,可利用SAS判定△ABP≌△PCD.【详解】当BP=1时,Rt△ABP≌Rt△PCD.理由如下:∵BC=8,BP=1,∴PC=6,∴AB=PC.∵AB⊥BC,DC⊥BC,∴∠B=∠C=90°.在△ABP和△PCD中,∵,∴△ABP≌△PCD(SAS).故答案为:1.【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)是解题的关键.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角相等时,角必须是两边的夹角.12、a5+5a4b+10a3b2+10a2b3+5ab4+b5【分析】分析题意得到规律,再把这个规律应用于解题.【详解】由题意分析可知,a5+5a4b+10a3b2+10a2b3+5ab4+b53故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5考点:找规律-数字的变化13、2+2【分析】根据对称的性质,即对称点到对称中心的距离相等,即可列式计算.【详解】解:∵点B和点C关于点A对称∴BC=2AB∵==+1∴BC=2(+1)=2+2故答案为2+2.【点睛】本题考查了对称的性质以及数轴上两点间距离的计算.数轴上两点间距离:=.14、±1【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵是一个完全平方式,∴m=±1.故答案为±1.【点睛】本题主要考查的是完全平方式,熟练掌握完全平方式的特点是解题的关键.15、1【分析】依据△ACD≌△AED(AAS),即可得到AC=AE=6cm,CD=ED,再根据勾股定理可得AB的长,进而得出EB的长;设DE=CD=x,则BD=8-x,依据勾股定理可得,Rt△BDE中,DE2+BE2=BD2,解方程即可得到DE的长,再利用BC-CD得出BD的长,最后把BE,DE和BD相加求解即可.【详解】解:∵AD平分∠CAB,

∴∠CAD=∠EAD,

又∵∠C=90°,DE⊥AB,

∴∠C=∠AED=90°,

又∵AD=AD,

∴△ACD≌△AED(AAS),

∴AC=AE=6cm,CD=ED,

∵Rt△ABC中,AB==10(cm),

∴BE=AB-AE=10-6=4(cm),

设DE=CD=x,则BD=8-x,

∵Rt△BDE中,DE2+BE2=BD2,

∴x2+42=(8-x)2,

解得x=3,

∴DE=CD=3cm,∴BD=BC-CD=8-3=5cm,∴BE+DE+BD=3+4+5=1cm,

故答案为:1.【点睛】本题考查了全等三角形的判定与性质,角平分线的定义以及勾股定理的运用,利用直角三角形勾股定理列方程求解是解决问题的关键.16、1【分析】已知a+b-c=1,△ABC是直角三角形,将s=,l=a+b+c用含c的代数式表示出来,再求解即可.【详解】∵a+b-c=1∴a+b=1+c∴(a+b)2=a2+2ab+b2=c2+8c+16又∵a2+b2=c2∴2ab=8c+16∴s==2c+1l=a+b+c=2c+1∴1故答案为:1【点睛】本题考查了勾股定理的应用,完全平方式的简单运算,直角三角形面积和周长计算方法.17、±1.【分析】根据题意,计算(a+b)2的值,从而求出a+b的值即可.【详解】(a+b)2=a2+2ab+b2=(a2+b2)+2ab=18﹣2=16,则a+b=±1.故答案为:±1.【点睛】本题考查了代数式的运算问题,掌握完全平方公式和代入法是解题的关键.18、3【解析】试题分析:由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻.∵∠C=72°,∠DBC=36°,∠A=36°,∴∠ABD=180°-72°-36°-36°=36°=∠A,∴AD=BD,△ADB是等腰三角形,∵根据三角形内角和定理知∠BDC=180°-72°-36°=72°=∠C,∴BD=BC,△BDC是等腰三角形,∵∠C=∠ABC=72°,∴AB=AC,△ABC是等腰三角形.故图中共3个等腰三角形.考点:本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理点评:由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.同时注意做到由易到难,不重不漏.三、解答题(共66分)19、14【分析】根据勾股定理的逆定理可判断出△ADB为直角三角形,即∠ADB=90°,在Rt△ADC中利用勾股定理可得出CD的长度从而求出BC长.【详解】在△ABD中,∵AB=13,BD=5,AD=12,∴,∴∴∠ADB=∠ADC=90º在Rt△ACD中,由勾股定理得,∴BC=BD+CD=5+9=14【点睛】本题考查了勾股定理及勾股定理的逆定理,属于基础题,解答本题的关键是判断出∠ADB=90°.20、(1)m=4,l2的解析式为;(2)5;(3)点P的坐标为(),(0,),(0,5),(5,0),(8,0),(0,6).【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=3,CE=4,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC-S△BOC的值;(3)由等腰三角形的定义,可对点P进行分类讨论,分别求出点P的坐标即可.【详解】解:(1)把C(m,3)代入一次函数,可得,解得m=4,∴C(4,3),设l2的解析式为y=ax,则3=4a,解得:a=,∴l2的解析式为:;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=3,CE=4,由,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC-S△BOC=×10×3×5×4=15-10=5;(3)∵是以为腰的等腰三角形,则点P的位置有6种情况,如图:∵点C的坐标为:(4,3),∴,∴,∴点P的坐标为:(),(0,),(0,5),(5,0),(8,0),(0,6).【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰三角形的性质,勾股定理及分类讨论思想等.21、(1)①(7,3);②(7,3)、(4,7)、(-4,1)、(-1,-3);(2)(4,2)、.【分析】(1)①过C作CD垂直于x轴构造“一线三垂直”,再根据全等三角形的性质求解即可;②点C有四处,分别作出图形,根据“一线三垂直”或对称求解即可;(2)当点G为直角顶点时,分点G在矩形MFNO的内部与外部两种情况构造“一线三垂直”求解即可.【详解】(1)①如图,过C作CD垂直于x轴,根据“一线三垂直”可得△AOB≌△BDC,∴AO=BD,OB=CD,∵点A(0,4),点B(3,0),∴AO=4,OB=3,∴OD=3+4=7,∴点C的坐标为(7,3);②如图,若AB为直角边,点C的位置可有4处,a、若点C在①的位置处,则点C的坐标为(7,3);b、若点C在的位置处,同理可得,则点的坐标为(4,7);c、若点C在的位置处,则、关于点A对称,∵点A(0,4),点(4,7),∴点的坐标为(-4,1);d、若点C在的位置处,则、C关于点B对称,∵点B(3,0),点C(7,3),∴点的坐标为(-1,-3);综上,点C的坐标为(7,3)、(4,7)、(-4,1)、(-1,-3);(2)当点G位于直线y=2x-6上时,分两种情况:①当点G在矩形MFNO的内部时,如图,过G作x轴的平行线AB,交y轴于A,交直线NF于点B,设G(x,2x-6);则OA=2x-6,AM=6-(2x-6)=12-2x,BG=AB-AG=8-x;则△MAG≌△GBP,得AM=BG,即:12-2x=8-x,解得x=4,∴G(4,2);当点G在矩形MFNO的外部时,如图,过G作x轴的平行线AB,交y轴于A,交直线NF的延长线于点B,设G(x,2x-6);则OA=2x-6,AM=(2x-6)-6=2x-12,BG=AB-AG=8-x;则△MAG≌△GBP,得AM=BG,即:2x-12=8-x,解得,∴G;综上,G点的坐标为(4,2)、.【点睛】本题考查的是一次函数综合题,涉及到点的坐标、矩形的性质、一次函数的应用、等腰直角三角形以及全等三角形等相关知识的综合应用,需要考虑的情况较多,难度较大.22、作图见解析.【分析】作公路a与公路b的交角AOB的平分线OC,连接MN,作线段MN的中垂直平分线EF,两线的交点就是所求.【详解】如图所示;【点睛】本题考查角平分线的性质和线段垂直平分线性质的应用,主要考查学生的动手操作能力和理解能力.23、(1)(x+2)2,(4x+3)2,(3x﹣2)2;(2)①b2=4ac,②m=±1【解析】(1)根据完全平方公式分解即可;(2)①根据已知等式得出b2=4ac,即可得出答案;②利用①的规律解题.【详解】(1)x2+4x+4=(x+2)2,16x2+24x+9=(4x+3)2,9x2-12x+4=(3x-2)2,故答案为(x+2)2,(4x+3)2,(3x-2)2;(2)①b2=4ac,故答案为b2=4ac;②∵多项式x2-2(m-3)x+(10-6m)是一个完全平方式,∴[-2(m-3)]2=4×1×(10-6m),m2-6m+9=10-6mm2=1m=±1.【点睛】本题考查了对完全平方公式的理解和应用,能根据完全平方公式得出b2=4ac是解此题的关键.24、见解析【分析】以BC所在的直线为x轴,以BC边上的高所在的直线为y轴,建立平面直角坐标系,则BO=CO,再根据勾股定理求出AO的长度,点A、B、C的坐标即可写出.【详解】如图,以BC所在是直线为x轴,以过A垂直于BC的直线为y轴,建立坐标系,O为原点,∵△ABC是正△ABC,∴O为BC的中点,而△ABC的边长为2,∴BO=CO=1,在Rt△AOB中,AB2=AO2+BO2,∴AO=,∴B(−1,0),C(1,0),A(0,).【点睛】本题主要考查坐标与图形的性质,等边三角形的性质,勾股定理的运用,建立适当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论