版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年人教版数学八年级下册章节知识讲练1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题.知识点01:勾股定理【高频考点精讲】1.勾股定理:直角三角形两直角边的平方和等于斜边的平方.(即:)2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.知识点02:勾股定理的逆定理【高频考点精讲】1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长,满足,那么这个三角形是直角三角形.应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤:(1)首先确定最大边,不妨设最大边长为;(2)验证与是否具有相等关系,若,则△ABC是以∠C为直角的直角三角形,反之,则不是直角三角形.3.勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t为正整数时,以为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为,且,那么存在成立.(例如④中存在=24+25、=40+41等)知识点03:勾股定理与勾股定理逆定理的区别与联系【高频考点精讲】区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.检测时间:120分钟试题满分:100分难度系数:0.49一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023秋•惠安县期末)如图,△ABC中,∠C=90°,AD是∠CAB的平分线,交BC于点D,若CD=5,BD=13,则AC的长为()A.7.5 B.8 C.10 D.122.(2分)(2023秋•简阳市期末)如图,表格中是直角三角形的是()A.① B.② C.③ D.①②3.(2分)(2023秋•青山区期末)△ABC的三条边分别为a,b,c,下列条件不能判断△ABC是直角三角形的是()A.b2=(a+c)(a﹣c) B.∠A=∠B+∠C C.∠A:∠B:∠C=3:4:5 D.a=6,b=8,c=104.(2分)(2023秋•嘉定区期末)满足下列条件的三角形中,不是直角三角形的是()A.三边长之比为3:4:5 B.三内角之比为3:4:5 C.三内角之比为1:2:3 D.三边长的平方之比为1:2:35.(2分)(2023秋•大东区期末)下列条件中,不能判定△ABC是直角三角形的是()A.∠A=∠B+∠C B.a:b:c=5:12:13 C.a2=(b+c)(b﹣c) D.∠A:∠B:∠C=3:4:56.(2分)(2023秋•如皋市期末)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=2,BC=1,将四个直角三角形中边长为2的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A. B. C. D.7.(2分)(2023秋•临渭区期末)如图,在平面直角坐标系中,点A坐标为(6,4),以点O为圆心,OA的长为半径画弧,交x轴的正半轴于点B,则点B的横坐标介于()A.5和6之间 B.7和8之间 C.10和11之间 D.8和9之间8.(2分)(2023春•庄浪县期中)如图,字母A所代表的正方形的面积为()A.4 B.16 C.36 D.649.(2分)(2023秋•衡阳期末)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EA的长是()km.A.4 B.5 C.6 D.10.(2分)(2023秋•凤城市期末)勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一.它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.如图,秋千静止时,踏板离地的垂直高度BE=1m,将它往前推6m至C处时(即水平距离CD=6m),踏板离地的垂直高度CF=4m,它的绳索始终拉直,则绳索AC的长是()m.A. B. C.6 D.二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023秋•南安市期末)如图,在△ABC中,∠ACB=90°,分别以AC,AB为边向外作正方形,面积分别为S1,S2,若S1=3,S2=7,则BC=.12.(2分)(2023秋•莱州市期末)如图,网格中每个小正方形的边长均为1,以A为圆心,AB为半径画弧,交最上方的网格线于点N,则MN的长是.13.(2分)(2023秋•武昌区期末)四个全等的直角三角形可以拼成两个正方形,有两种拼法,如图所示,两直角边长分别为a,b,图中空白部分的面积分别为S1,S2,若S1=2S2,则=.14.(2分)(2023秋•衡阳期末)勾股定理a2+b2=c2本身就是一个关于a,b,c的方程,满足这个方程的正整数解(a,b,c)通常叫做勾股数组.毕达哥拉斯学派提出了一个构造勾股数组的公式,根据该公式可以构造出如下勾股数组:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股数组可以发现,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面规律,第5个勾股数组为.15.(2分)(2023秋•惠安县期末)如图是2×4正方形网格图,点A、B、C、D、E都是格点,则∠BAC﹣∠BDE=°.16.(2分)(2023秋•龙岗区校级期末)如图,在Rt△ABC中,∠ACB=90°,AC=16,AB=20,动点D从点A出发,沿线段AB以每秒2个单位的速度向B运动,过点D作DF⊥AB交BC所在的直线于点F,连接AF,CD.设点D运动时间为t秒.当△ABF是等腰三角形时,则t=秒.17.(2分)(2023秋•巴中期末)在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几.”此问题可理解为:如图,有一架秋千,当它静止时,踏板离地距离AB长度为1尺.将它往前水平推送10尺,即A'C=10尺,则此时秋千的踏板离地距离A'D就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,则绳索OA长为尺.18.(2分)(2023秋•惠安县期末)2002年国际数学家大会在北京召开,大会的会标是由我国古代数学家赵爽的“弦图”演变而来,体现了数学研究中的继承和发展.如图是用八个全等的直角三角形拼接而成的“弦图”.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为,则S1+S2+S3=.19.(2分)(2022•锡山区校级三模)“勾股图”有着悠久的历史,欧几里得在《几何原本》中曾对它做了深入研究.如图,在△ABC中,∠ACB=90°,分别以△ABC的三条边为边向外作正方形.连接EB,CM,DG,CM分别与AB,BE相交于点P,Q.若∠AMP=30°,则∠ABE=°,的值为.20.(2分)(2022春•莘县期末)如图,“赵爽弦图”由4个完全一样的直角三角形所围成,在Rt△ABC中,AC=b,BC=a,∠ACB=90°,若图中大正方形的面积为60,小正方形的面积为10,则(a+b)2的值为.三.解答题(共8小题,满分60分)21.(6分)(2023秋•常州期末)防火安全无小事,时时处处需留心.一天晚上,某居民楼的点A处着火,消防大队派出云梯消防车展开紧急救援.已知点A离地面28米,消防车的云梯底部(点B)与地面的垂直距离是4米,与居民楼的水平距离是10米.云梯需要伸长多少米才能到达着火处?22.(6分)(2023秋•临渭区期末)如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,DA=1.(1)求∠DAB的度数;(2)求四边形ABCD的面积.23.(8分)(2023秋•衡山县期末)勾股定理是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一.它不但因证明方法层出不穷吸引着人们,更因为应用广泛而使人入迷.(1)应用场景1——在数轴上画出表示无理数的点.如图1,在数轴上找出表示3的点A,过点A作直线l垂直于OA,在l上取点B,使AB=2,以原点O为圆心,OB为半径作弧,则弧与数轴的交点C表示的数是.(2)应用场景2——解决实际问题.如图2,秋千静止时,踏板离地的垂直高度BE=1m,将它往前推6m至C处时,水平距离CD=6m,踏板离地的垂直高度CF=4m,它的绳索始终拉直,求绳索AC的长.24.(8分)(2023秋•岳阳楼区校级期末)如图,有一架秋千,当它静止在AD的位置时,踏板离地的垂直高度为0.6m,将秋于AD往前推送3m,到达AB的位置,此时,秋千的踏板离地的垂直高度为1.6m,秋千的绳索始终保持拉直的状态.(1)求秋千的长度.(2)如果想要踏板离地的垂直高度为2.6m时,需要将秋千AD往前推送m.25.(8分)(2022秋•薛城区期末)洋洋与林林进行遥控赛车游戏,终点为点A,洋洋的赛车从点C出发,以4米/秒的速度由西向东行驶,同时林林的赛车从点B出发,以3米/秒的速度由南向北行驶(如图).已知赛车之间的距离小于或等于25米时,遥控信号会产生相互干扰,AC=40米,AB=30米.出发3秒钟时,遥控信号是否会产生相互干扰?26.(8分)(2023秋•岱岳区期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=3m,若秋千的绳索始终拉得很直,求绳索AD的长度.27.(8分)(2023秋•蒲城县期末)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.(2)已知点M、N是线段AB的勾股分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临沂道路运输从业人员资格考试内容有哪些
- 电瓶车撞车调解协议书(2篇)
- 电力售后服务合同(2篇)
- 2024-2025学年高中政治第一单元生活与消费课题能力提升三含解析新人教版必修1
- 二年级教师下学期工作总结
- 一学期教学工作总结
- 公司设计师工作总结
- 老师教研年度工作总结
- 入团申请书模板
- 公司员工培训计划方案
- 海洋垃圾处理行业可行性分析报告
- 基于STM32单片机的智能停车场车位管理系统的设计与实现
- 小型家用电器制造工(省赛)理论考试题及答案
- 公共部门绩效管理案例分析
- 无人机培训计划表
- 墙面油漆翻新合同范例
- 2024届高考英语词汇3500左右
- 2024年-2025年海船船员考试-船舶人员管理考试题及答案
- 2025届安徽省皖南八校联盟高二物理第一学期期末统考试题含解析
- 门诊口腔院感基础知识培训
- DB11T 1812-2020 既有玻璃幕墙安全性检测与鉴定技术规程
评论
0/150
提交评论