版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省沈阳市法库县数学八年级第一学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.如图,点,分别在线段,上,与相交于点,已知,现添加一个条件可以使,这个条件不能是()A. B.C. D.2.如图,在△ABC中,AD是BC边上的高,且∠ACB=∠BAD,AE平分∠CAD,交BC于点E,过点E作EF∥AC,分别交AB、AD于点F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4个 B.3个 C.2个 D.1个3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC4.下列各式计算正确的是()A.2a2•3a3=6a6 B.(﹣2a)2=﹣4a2C.(a5)2=a7 D.(ab2)3=a3b65.的立方根是()A.±2 B.±4 C.4 D.26.如图,已知正比例函数y1=ax与一次函数y1=x+b的图象交于点P.下面有四个结论:①a<0;②b<0;③当x>0时,y1>0;④当x<﹣1时,y1>y1.其中正确的是()A.①② B.②③ C.①③ D.①④7.如图所示的多边形内角和的度数为()度A.360 B.540 C.720 D.9008.如图,牧童在A处放牛,其家在B处,A,B到海岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750 米 B.1500米 C.500 米 D.1000米9.如图,已知直角三角板中,,顶点,分别在直线,上,边交线于点.若,且,则的度数为()A. B. C. D.10.49的平方根为()A.7 B.-7 C.±7 D.±11.下列图形中,不是轴对称图形的是()A. B. C. D.12.如图等边△ABC边长为1cm,D、E分别是AB、AC上两点,将△ADE沿直线DE折叠,点A落在处,A在△ABC外,则阴影部分图形周长为()A.1cm B.1.5cm C.2cm D.3cm二、填空题(每题4分,共24分)13.观察下列各式:;;;……根据前面各式的规律可得到________.14.如图,和都是等腰三角形,且,当点在边上时,_________________度.15.已知函数y1=x+2,y2=4x-4,y3=-x+1,若无论x取何值,y总取y1,y2,y3中的最大值,则y的最小值是__________.16.如图,平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点B的坐标为(10,6),点P为BC边上的动点,当△POA为等腰三角形时,点P的坐标为_________.17.若关于和的二元一次方程组,满足,那么的取值范围是_____.18.是方程2x-ay=5的一个解,则a=____.三、解答题(共78分)19.(8分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;(3)直接写出点B2,C2的坐标.20.(8分)如图,已知点在线段上,分别以,为边长在上方作正方形,,点为中点,连接,,,设,.(1)若,请判断的形状,并说明理由;(2)请用含,的式子表示的面积;(3)若的面积为6,,求的长.21.(8分)如图,已知,,,,请你求出和的大小.22.(10分)苏科版《数学》八年级上册第35页第2题,介绍了应用构造全等三角形的方法测量了池塘两端A、B两点的距离.星期天,爱动脑筋的小刚同学用下面的方法也能够测量出家门前池塘两端A、B两点的距离.他是这样做的:选定一个点P,连接PA、PB,在PM上取一点C,恰好有PA=14m,PB=13m,PC=5m,BC=12m,他立即确定池塘两端A、B两点的距离为15m.小刚同学测量的结果正确吗?为什么?23.(10分)如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF.(1)求证:△ACE≌△BCD;(2)求证:BF⊥AE;(3)请判断∠CFE与∠CAB的大小关系并说明理由.24.(10分)求证:线段垂直乎分线上的点到线段两端的距离相等.已知:求证:证明:25.(12分)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.我市某汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1﹣5月份每辆车的销售价格是多少万元?26.织金县某中学300名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)在这次调查中D类型有多少名学生?(2)写出被调查学生每人植树量的众数、中位数;(3)求被调查学生每人植树量的平均数,并估计这300名学生共植树多少棵?
参考答案一、选择题(每题4分,共48分)1、C【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理ASA、AAS、SAS添加条件,逐一证明即可.【详解】∵AB=AC,∠A为公共角∴A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添,利用AAS即可证明△ABE≌△ACD;C、如添,因为SSA不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;D、如添,利用SAS即可证明△ABE≌△ACD.故选:C.【点睛】本题考查全等三角形的判定定理的掌握和理解,熟练掌握全等三角形的判定定理是解题关键.2、B【解析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】解:由已知可知∠ADC=∠ADB=90°,∵∠ACB=∠BAD∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,∵三角形ABC的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE平分∠CAD,EF∥AC,∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②错误,∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,∴∠BAE=∠BEA,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF,④正确,综上正确的一共有3个,故选B.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.3、C【分析】通过全等三角形的性质进行逐一判断即可.【详解】A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选:C.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.4、D【分析】根据单项式乘法法则、积的乘方、幂的乘方法则计算即可.【详解】A.2a2•3a3=6a5,故原题计算错误;B.(﹣2a)2=4a2,故原题计算错误;C.(a5)2=a10,故原题计算错误;D.(ab2)3=a3b6,故原题计算正确.故选:D.【点睛】本题考查了单项式乘法,以及幂的乘方和积的乘方,关键是掌握计算法则.5、D【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.根据算术平方根的定义可知64的算术平方根是8,而8的立方根是2,由此就求出了这个数的立方根.【详解】∵64的算术平方根是8,8的立方根是2,∴这个数的立方根是2.故选D.【点睛】本题考查了立方根与算术平方根的相关知识点,解题的关键是熟练的掌握立方根与算术平方根的定义.6、D【分析】根据正比例函数和一次函数的性质判断即可.【详解】因为正比例函数y1=ax经过二、四象限,所以a<0,①正确;一次函数\过一、二、三象限,所以b>0,②错误;由图象可得:当x>0时,y1<0,③错误;当x<−1时,y1>y1,④正确;故选D.【点睛】考查一次函数的图象与系数的关系,一次函数与不等式,熟练掌握和灵活运用相关知识是解题的关键.7、B【分析】根据多边形的内角和定理(n﹣2)×180°计算即可.【详解】(5﹣2)×180°=180°×3=540°.故选:B.【点睛】本题考查了多边形的内角和定理.掌握多边形内角和定理是解答本题的关键.8、D【分析】根据轴对称的性质和“两点之间线段最短”,连接A′B,得到最短距离为A′B,再根据全等三角形的性质和A到河岸CD的中点的距离为500米,即可求出A'B的值.【详解】解:作出A的对称点A′,连接A′B与CD相交于M,则牧童从A处把牛牵到河边饮水再回家,最短距离是A′B的长.
由题意:AC=BD,所以A′C=BD,
所以CM=DM,M为CD的中点,
易得△A′CM≌△BDM,
∴A′M=BM
由于A到河岸CD的中点的距离为500米,
所以A′到M的距离为500米,
A′B=2A′M=1000米.
故最短距离是1000米.故选:D.【点睛】此题考查了轴对称的性质和“两点之间线段最短”,解答时要注意应用相似三角形的性质.9、B【分析】根据直角三角形的特点、平行线的性质及平角的性质即可求解.【详解】∵直角三角板中,,∴∵∴∵∴故=故选B.【点睛】此题主要考查三角形的角度求解,解题的关键是熟知平行线的性质.10、C【分析】根据平方根的定义进行求解即可.【详解】.∵=49,则49的平方根为±7.故选:C11、C【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项符合题意;D.是轴对称图形,故本选项不合题意.故选:C.【点睛】此题考查轴对称图形的概念,解题关键在于寻找对称轴,图形两部分折叠后可重合.12、D【分析】由题意得到DA′=DA,EA′=EA,经分析判断得到阴影部分的周长等于△ABC的周长即可解决问题.【详解】解:如图,由题意得:DA′=DA,EA′=EA,∴阴影部分的周长=DG+GA′+EF+FA′+DB+CE+BG+GF+CF=DA′+EA′+DB+CE+BG+GF+CF=(DA+BD)+(BG+GF+CF)+(AE+CE)=AB+BC+AC=1+1+1=3(cm)故选D.【点睛】本题考查了等边三角形的性质以及折叠的问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.二、填空题(每题4分,共24分)13、-1【分析】根据题目中的规律可看出,公式左边的第一项为(x-1),公式左边的第二项为x的n次幂开始降次排序,系数都为1,公式右边为-1即可.【详解】由题目中的规律可以得出,-1,故答案为:-1.【点睛】本题考查了整式乘除相关的规律探究,掌握题目中的规律探究是解题的关键.14、1【分析】先根据“SAS”证明△ABE≌△CBD,从而∠BAE=∠C.再根据等腰三角形的两底角相等求出∠C的度数,然后即可求出∠BAE的度数.【详解】∵和都是等腰三角形,∴AB=BC,BE=BD,∵,∴∠ABE=∠CBD,在△ABE和△CBD中,∵AB=BC,∠ABE=∠CBD,BE=BD,∴△ABE≌△CBD,∴∠BAE=∠C.∵AB=BC,∠ABC=100°,∴∠C=(180°-100°)÷2=1°,∴∠BAE=1°.故答案为:1.【点睛】本题主要考查了等腰三角形的定义,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.15、【分析】利用两直线相交的问题,分别求出三条直线两两相交的交点,然后观察函数图象,利用一次函数的性质易得:当x≤-时,y3最大;当-≤x≤2时,y1最大;当x≥2时,y2最大,于是可得满足条件的y的最小值.【详解】解:y1=x+2,y2=4x-4,y3=-x+1,如下图所示:令y1=y2,得x+2=4x-4解得:x=2,代入解得y=4∴直线y1=x+2与直线y2=4x-4的交点坐标为(2,4),令y2=y3,得4x-4=-x+1解得:x=代入解得:y=∴直线y2=4x-4与直线y3=-x+1的交点坐标为(),令y1=y3,得x+2=-x+1解得:x=代入解得:y=∴直线y1=x+2与直线y3=-x+1的交点坐标为(),由图可知:①当x≤-时,y3最大,∴此时y=y3,而此时y3的最小值为,即此时y的最小值为;②当-≤x≤2时,y1最大∴此时y=y1,而此时y1的最小值为,即此时y的最小值为;③当x≥2时,y2最大,∴此时y=y2,而此时y2的最小值为4,即此时y的最小值为4综上所述:y的最小值为.
故答案为:.【点睛】本题考查了一次函数的交点问题和利用一次函数的图象解决问题,掌握一次函数的交点求法和学会观察一次函数的图象是解决此题的关键.16、(2,6)、(5,6)、(8,6)【解析】当PA=PO时,根据P在OA的垂直平分线上,得到P的坐标;当OP=OA=10时,由勾股定理求出CP即可;当AP=AO=10时,同理求出BP、CP,即可得出P的坐标.【详解】当PA=PO时,P在OA的垂直平分线上,P的坐标是(5,6);当OP=OA=10时,由勾股定理得:CP==8,P的坐标是(8,6);当AP=AO=10时,同理BP=8,CP=10-8=2,P的坐标是(2,6).故答案为(2,6),(5,6),(8,6).【点睛】本题主要考查对矩形的性质,等腰三角形的性质,勾股定理,坐标与图形的性质等知识点的理解和掌握,能求出所有符合条件的P的坐标是解此题的关键.17、m>−1【分析】两方程相加可得x+y=m+1,根据题意得出关于m的不等式,解之可得.【详解】解:,①+②得:3x+3y=3m+3,则x+y=m+1,∵,∴m+1>0,解得:m>−1,故答案为:m>−1.【点睛】本题考查的是解二元一次方程组以及解一元一次不等式,整体求出x+y=m+1是解题的关键.18、-1【解析】试题解析:把代入方程2x-ay=5,得:4-a=5,解得:a=-1.三、解答题(共78分)19、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).【解析】试题分析:(1)利用点平移的规律写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质画出点B、C的对应点B2、C2,从而得到△AB2C2,再写出点B2、C2的坐标.试题解析:解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).20、(1)等腰三角形,理由见解析;(2);(3)4【分析】(1)利用题目所给条件,通过SAS证明≌,可得出结果;(2)根据图像可知,,分别求出各部分面积可求出最终结果;(3)若的面积为6,则,因式分解后可解出最终结果.【详解】(1)为等腰三角形.∵点为的中点,∴,∵,,∴,,∵,∴≌,∴,∴为等腰三角形.(2)∵,,,∴.(3)∵,∴,∴,∵,∴,∴,即.【点睛】本题主要考查三角形综合问题,涉及证明三角形全等,三角形面积的求解,需要熟练掌握全等三角形以及多边形中三角形面积求解的方法,利用数形结合的思想是解题的关键.21、;【分析】根据全等三角形的性质及三角形的内角和即可求解.【详解】∵∴=,∴∵∴=.【点睛】此题主要考查三角形的角度求解,解题的关键是熟知全等三角形的性质.22、小刚同学测量的结果正确,理由见解析.【分析】由勾股定理的逆定理证出△BCP是直角三角形,∠BCP=90°,得出∠ACB=90°,再由勾股定理求出AB即可.【详解】解:小刚同学测量的结果正确,理由如下:∵PA=14m,PB=13m,PC=5m,BC=12m,∴AC=PA﹣PC=9m,PC2+BC2=52+122=169,PB2=132=169,∴PC2+BC2=PB2,∴△BCP是直角三角形,∠BCP=90°,∴∠ACB=90°,∴AB===15(m).【点睛】本题考查了勾股定理和勾股定理的逆定理的综合运用;熟练掌握勾股定理和勾股定理的逆定理是解题的关键.23、(1)见解析;(2)见解析;(3)∠CFE=∠CAB,见解析【分析】(1)根据垂直的定义得到∠ACB=∠DCE=90°,由角的和差得到∠BCD=∠ACE,即可得到结论;(2)根据全等三角形的性质得到∠CBD=∠CAE,根据对顶角的性质得到∠BGC=∠AGE,由三角形的内角和即可得到结论;(3)过C作CH⊥AE于H,CI⊥BF于I,根据全等三角形的性质得到AE=BD,S△ACE=S△BCD,根据三角形的面积公式得到CH=CI,于是得到CF平分∠BFH,推出△ABC是等腰直角三角形,即可得到结论.【详解】(1)证明:∵BC⊥CA,DC⊥CE,∴∠ACB=∠DCE=90°,∴∠BCD=∠ACE,在△BCD与△ACE中,,∴△ACE≌△BCD;(2)∵△BCD≌△ACE,∴∠CBD=∠CAE,∵∠BGC=∠AGE,∴∠AFB=∠ACB=90°,∴BF⊥AE;(3)∠CFE=∠CAB,过C作CH⊥AE于H,CI⊥BF于I,∵△BCD≌△ACE,∴,∴CH=CI,∴CF平分∠BFH,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学6.1信息的传递和通信
- 天弘爱理财APP整合方案
- 外勤医疗服务管理制度
- 异常情况和事故处理管理制度
- 表格制作方法
- 1《古诗三首》核心素养分层学习任务单-2022-2023学年三年级语文下册新课标(部编版)
- 2024年合作办理客运从业资格证理论考试题
- 2024年北京汽车客运资格证考试题目
- 2024年宣城客运从业资格证报名考试题目
- 2024年本溪客运从业资格证模拟考试练习题
- DB65∕T 3253-2020 建筑消防设施质量检测评定规程
- 四年级上册美术教案15《有创意的书》人教版
- (完整PPT)半导体物理与器件物理课件
- 否定词否定句课件(PPT 38页)
- 水力学第12章 相似理论-2015
- 第7章国际资本流动与国际金融危机
- 藏传佛教英文词汇
- 模拟法庭刑事案例解析
- 人像摄影构图(PPT)
- 铁路杂费收费项目和标准
- 丹麦InteracousticsAD226系列临床诊断型听力计使用手册
评论
0/150
提交评论