版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省射阳二中学数学八年级第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列式子是分式的是()A. B. C. D.2.下列调查适合抽样调查的是()A.审核书稿中的错别字 B.企业招聘,对应聘人员进行面试C.了解八名同学的视力情况 D.调查某批次汽车的抗撞击能力3.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点C的坐标为()A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)4.等腰三角形的周长为,其中一边长为,则该等腰三角形的腰长为()A. B.或 C. D.5.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形从当前位置开始进行一次平移操作,平移后的正方形的顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个 B.4个 C.5个 D.无数个6.下面是“北”“比”“鼎”“射”四个字的甲骨文,其中不是轴对称图形的是()A. B. C. D.7.如图,等腰三角形ABC的底角为72°,腰AB的垂直平分线交另一腰AC于点E,垂足为D,连接BE,则下列结论错误的是()A.∠EBC为36° B.BC=AEC.图中有2个等腰三角形 D.DE平分∠AEB8.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.79.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=()A.30° B.25° C.15° D.10°10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°二、填空题(每小题3分,共24分)11.二次三项式是完全平方式,则的值是__________.12.如图,AD是△ABC的中线,∠ADC=30°,把△ADC沿着直线AD翻折,点C落在点E的位置,如果BC=2,那么线段BE的长度为____________13.用四舍五入法把1.23536精确到百分位,得到的近似值是_____.14.比较大小:_____.15.若三角形的三边满足a:b:c=5:12:13,则这个三角形中最大的角为_____度.16.当x=______________时,分式的值是0?17.若方程组无解,则y=kx﹣2图象不经过第_____象限.18.如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了_______场.三、解答题(共66分)19.(10分)计算题(1)先化简,再求值:其中a=1.(2)解方程:20.(6分)如图,四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD的面积.21.(6分)(1)求式中x的值:;(2)计算:22.(8分)如图,在中,,,点、分别为、中点,,,若,求的长.23.(8分)如图,在平面直角坐标系中,△ABC的三个顶点的位置如图所示.(1)若△ABC内有一点P(a,b)随着△ABC平移后到了点P′(a+4,b﹣1),直接写出A点平移后对应点A′的坐标.(2)直接作出△ABC关于y轴对称的△A′B′C′(其中A′、B′、C′分别是A、B、C的对应点)(3)求四边形ABC′C的面积.24.(8分)如图,在四边形ABCD中,,∠A=∠C,CD=2AD,F为CD的中点,连接BF(1)求证:四边形ABCD是平行四边形.(2)求证:BF平分∠ABC.25.(10分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如图9的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生;(2)请将条形统计图补充完整;(3)分别求出安全意识为“淡薄”的学生占被调查学生总数的百分比、安全意识为“很强”的学生所在扇形的圆心角的度数.26.(10分)如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连接DE,AE=5,BE=4,则DF=_____.
参考答案一、选择题(每小题3分,共30分)1、B【解析】解:A、C、D是整式,B是分式.故选B.2、D【分析】根据“抽样调查”和“全面调查”各自的特点结合各选项中的实际问题分析解答即可.【详解】A选项中,“审核书稿中的错别字”适合使用“全面调查”;B选项中,“企业招聘,对应聘人员进行面试”适合使用“全面调查”;C选项中,“了解八名同学的视力情况”适合使用“全面调查”;D选项中,“调查某批次汽车的抗撞击能力”适合使用“抽样调查”.故选D.【点睛】熟知“抽样调查和全面调查各自的特点和适用范围”是解答本题的关键.3、C【解析】A,C点关于原点对称,所以,C点坐标是(-2,-2)选C.4、C【分析】此题分为两种情况:4cm是等腰三角形的底边或4cm是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:若4cm为等腰三角形的腰长,则底边长为18-4-4=10(cm),4+4=8<10,不符合三角形的三边关系;
若4cm为等腰三角形的底边,则腰长为(18-4)÷2=7(cm),此时三角形的三边长分别为7cm,7cm,4cm,符合三角形的三边关系;
∴该等腰三角形的腰长为7cm,
故选:C.【点睛】此题考查了等腰三角形的两腰相等的性质,同时注意三角形的三边关系:三角形任意两边之和大于第三边.5、C【分析】结合正方形的特征,可知平移的方向只有5个,向上,下,右,右上45°,右下45°方向,否则两个图形不轴对称.【详解】因为正方形是轴对称图形,有四条对称轴,因此只要沿着正方形的对称轴进行平移,平移前后的两个图形组成的图形一定是轴对称图形,观察图形可知,向上平移,向上平移、向右平移、向右上45°、向右下45°平移时,平移前后的两个图形组成的图形都是轴对称图形,故选C.【点睛】本题考查了图形的平移、轴对称图形等知识,熟练掌握正方形的结构特征是解本题的关键.6、B【解析】根据轴对称的定义,逐一判断选项,即可得到答案.【详解】A是轴对称图形,不符合题意,B不是轴对称图形,符合题意,C是轴对称图形,不符合题意,D是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.7、C【解析】根据等腰三角形的性质和线段垂直平分线的性质一一判断即可.【详解】A.∵等腰△ABC的底角为72°,∴∠A=180°﹣72°×2=36°.∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=36°,∴∠EBC=∠ABC﹣∠ABE=36°.故A正确;B.∵∠ABE=∠A=36°,∴∠BEC=72°.∵∠C=72°,∴∠BEC=∠C,∴BE=BC.∵AE=BE,∴BC=AE,故B正确;C.∵BC=BE=AE,∴△BEC、△ABE是等腰三角形.∵△ABC是等腰三角形,故一共有3个等腰三角形,故C错误;D.∵AE=BE,DE⊥AB,∴DE平分∠AEB.故D正确.故选C.【点睛】本题考查了线段垂直平分线的性质,以及等腰三角形的判定和性质,关键是掌握等边对等角.8、C【详解】试题解析:①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI都是等腰三角形.故选C.考点:画等腰三角形.9、C【详解】解:∵CG=CD,DF=DE,∴∠CGD=∠CDG,∠DEF=∠DFE,∵∠ACB=2∠CDG,∴∠CDG=30∵∠CDG=2∠E,∴∠E=1510、B【解析】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.二、填空题(每小题3分,共24分)11、17或-7【分析】利用完全平方公式的结构特征判断即可确定出k的值.【详解】解:∵二次三项式4x2-(k-5)x+9是完全平方式,
∴k-5=±12,
解得:k=17或k=-7,
故答案为:17或-7【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.12、【分析】根据折叠的性质判定△EDC是等边三角形,然后再利用Rt△BEC求BE.【详解】解:连接,是的中线,且沿着直线翻折,,是等腰三角形,,,为等边三角形,,在中,,【点睛】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等边三角形的性质求解.13、1.1【分析】把千分位上的数字5进行四舍五入即可.【详解】解:1.23536精确到百分位,得到的近似值是1.1.故答案为1.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14、>【分析】先把两个实数平方,然后根据实数的大小的比较方法即可求解.【详解】∵()2=75>()2=72,而>0,>0,∴>.故答案为:>.【点睛】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.15、1【解析】设三角形的三边分别为5x,12x,13x,则(5x)2+(12x)2=(13x)2,根据勾股定理的逆定理,这个三角形是直角三角形,则这个三角形中最大的角为1度,故答案为:1.16、-1【解析】由题意得,解之得.17、一【分析】根据两直线平行没有公共点得到k=3k+1,解得k=﹣,则一次函数y=kx﹣2为y=﹣x﹣2,然后根据一次函数的性质解决问题.【详解】解:∵方程组无解,∴k=3k+1,解得k=﹣,∴一次函数y=kx﹣2为y=﹣x﹣2,一次函数y=﹣x﹣2经过第二、三、四象限,不经过第一象限.故答案为一.【点睛】本题考查一次函数与二元一次方程组的关系、一次函数图像与系数的关系,解题的关键是求出k的值.18、1【详解】解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),∴胜场:40×(1﹣20%﹣25%)=40×55%=1(场).故答案为:1.【点睛】本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.三、解答题(共66分)19、(2),2;(2)x=-2【分析】(2)先计算括号里面的,再因式分解,然后将除法转化为乘法,约分即可.
(2)去掉分母,将分式方程转化为整式方程,求出解后再检验.【详解】解:(2)===,将a=2代入,原式=2;(2)去分母得:,去括号得:,移项合并得:,系数化为2得:x=-2.经检验:x=-2是原方程的解.【点睛】本题考查了分式的化简求值和解分式方程,解题的关键是掌握运算法则和解法.20、(1)∠D是直角.理由见解析;(2)2.【分析】(1)连接AC,先根据勾股定理求得AC的长,再根据勾股定理的逆定理,求得∠D=90°即可;
(2)根据△ACD和△ACB的面积之和等于四边形ABCD的面积,进行计算即可.【详解】(1)∠D是直角.理由如下:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理得AC2=202+152=1.又∵CD=7,AD=24,∴CD2+AD2=1,∴AC2=CD2+AD2,∴∠D=90°.(2)四边形ABCD的面积=AD•DC+AB•BC=×24×7+×20×15=2.【点睛】考查了勾股定理以及勾股定理的逆定理的综合运用,解决问题时需要区别勾股定理及其逆定理.通过作辅助线,将四边形问题转化为三角形问题是关键.21、(1)x=5或﹣3;(2)﹣1.【分析】(1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(x﹣1)2=16,x﹣1=±4,解得:x=5或﹣3;(2)=﹣1﹣5﹣3=﹣1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22、EG=5cm.【分析】连接AE、AG,根据线段垂直平分线上的点到线段两端点的距离相等可得EB=EA,再根据等腰三角形两底角相等求出∠B,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AEG=60°,同理求出∠AGE=60°,从而判断出,△AEG为等边三角形,再根据等边三角形三边都相等列式求解即可.【详解】如图,连接AE、AG,∵D为AB中点,ED⊥AB,∴EB=EA,∴△ABE为等腰三角形,又∵∠B==30°,∴∠BAE=30°,∴∠AEG=60°,同理可证:∠AGE=60°,∴△AEG为等边三角形,∴AE=EG=AG,又∵AE=BE,AG=GC,∴BE=EG=GC,又BE+EG+GC=BC=15(cm),∴EG=5(cm).【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,作辅助线构造出等腰三角形与等边三角形是解题的关键.23、(1)点A'(2,2);(2)详见解析;(3)5.5【分析】(1)根据平移的特点得出坐标即可;(2)根据轴对称的性质画出图形即可;(3)利用三角形的面积公式解答即可.【详解】解:(1)∵△ABC内有一点P(a,b)随着△ABC平移后到了点P′(a+4,b﹣1),点A(﹣2,3),∴点A'(2,2);(2)如图所示:(3)这里给到了网格图,所以直接补全所求面积为5×4的长方形,即可求得四边形ABC′C的面积=.【点睛】本题主要考查的是轴对称的变换以及相关的几何问题,这里需要注意得出正确的对应点,面积的计算借助网格图直接补全长方形即可求得最后答案.24、(1)证明见解析;(2)证明见解析.【分析】(1)先根据平行线的性质可得,再根据等量代换可得,然后根据平行线的判定可得,最后根据平行四边形的判定即可得证;(2)先根据线段中点的定义可得,从而可得,再根据平行四边形的性质可得,然后根据等腰三角形的性质可得,最后根据平行线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学6.1信息的传递和通信
- 天弘爱理财APP整合方案
- 外勤医疗服务管理制度
- 异常情况和事故处理管理制度
- 表格制作方法
- 1《古诗三首》核心素养分层学习任务单-2022-2023学年三年级语文下册新课标(部编版)
- 2024年合作办理客运从业资格证理论考试题
- 2024年北京汽车客运资格证考试题目
- 2024年宣城客运从业资格证报名考试题目
- 2024年本溪客运从业资格证模拟考试练习题
- 城市道路机动车安全驾驶指南
- 我有一盏小灯笼
- 湖南省建设工程质量检测收费项目和收费标准
- 职业倦怠量表MBIGS (MBIGeneral Survey)
- 9-1文化发展的必然选择 教学设计 高中政治统编版必修4(2023~2024学年)
- 预防一氧化碳中毒安全教育完整PPT
- 镇域经济的发展与思考
- 安全生产的目标设定与衡量指标
- 河道清淤施工方案和专项施工方案
- 早发性卵巢功能不全的临床诊疗专家共识(2023版)
- 守岛战士生活艰苦的资料
评论
0/150
提交评论