版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省苏州市相城第三实验中学数学八年级第一学期期末学业质量监测试题末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.五一”期间,某班同学包租一辆面包车前去东方太阳城游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费,若设原来参加游览的同学有x人,为求x,可列方程为(
)A. B. C. D.2.如图,△ABC的两个外角的平分线相交于D,若∠B=50°,则∠ADC=(
)A.60° B.80° C.65° D.40°3.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是04.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的底角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75° D.()n•85°5.如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=4,点P是线段AD上的动点,连接BP,CP,若△BPC周长的最小值为16,则BC的长为()A.5 B.6 C.8 D.106.下列各数中最小的是()A.0 B.1 C.﹣ D.﹣π7.下列关系式中,不是的函数的是()A. B. C. D.8.浚县古城是闻名遐迩的历史文化名城,“元旦”期间相关部门对到浚县观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是()A.此次调查的总人数为5000人B.扇形图中的为10%C.样本中选择公共交通出行的有2500人D.若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有2.5万人9.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交,于点、,再分别以点、为圆心,大于的长为半径画弧,两弧交于点,作射线交于点,若,,则的面积是()A.10 B.15 C.20 D.3010.班上数学兴趣小组的同学在元旦时,互赠新年贺卡,每两个同学都相互赠送一张,小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴趣小组人数为x人,则可列方程为()A.x(x-1)=90 B.x(x-1)=2×90 C.x(x-1)=90÷2 D.x(x+1)=90二、填空题(每小题3分,共24分)11.如图,小明站在离水面高度为8米的岸上点处用绳子拉船靠岸,开始时绳子的长为17米,小明以1米每秒的速度收绳,7秒后船移动到点的位置,问船向岸边移动了______米(的长)(假设绳子是直的).12.已知点P(3,a)关于y轴的对称点为(b,2),则a+b=_______.13.甲、乙两同学近期次数学单元测试成绩的平均分相同,甲同学成绩的方差,乙同学成绩的方差则它们的数学测试成绩较稳定的是_______________________(填甲或乙)14.近似数3.1415926用四舍五入法精确到0.001的结果是_____.15.不等式组的解集为,则不等式的解集为__________16.若等腰三角形的一个内角比另一个内角大,则等腰三角形的顶角的度数为________.17.在RtΔABC中,AB=3cm,BC=4cm,则AC边的长为_____.18.如图,两地相距千米,甲、乙两人都从地去地,图中和分别表示甲、乙两人所走路程(千米)与时间(小时)之间的关系,下列说法:①乙晚出发小时;②乙出发小时后追上甲;③甲的速度是千米/小时;④乙先到达地.其中正确的是__________.(填序号)三、解答题(共66分)19.(10分)如图,平面直角坐标系中,、,且、满足(1)求、两点的坐标;(2)过点的直线上有一点,连接、,,如图2,当点在第二象限时,交轴于点,延长交轴于点,设的长为,的长为,用含的式子表示;(3)在(2)的条件下,如图3,当点在第一象限时,过点作交于点,连接,若,,求的长.20.(6分)先化简,再求值:,其中且为整数.请你从中选取一个喜欢的数代入求值.21.(6分)我们在学习了完全平方公式后,对于一些特殊数量关系的式子应该学会变形.如m2+2mn+2n2﹣6n+9=0;→m2+2mn+n2+n2﹣6n+9=0;→(m+n)2+(n﹣3)2=0,就会很容易得到m、n.已知:a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.22.(8分)计算:(1)计算:(2)计算:(3)先化简,再求值,其中.23.(8分)如图,已知点,,,在一条直线上,且,,,求证:.24.(8分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC.25.(10分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.26.(10分)某中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以下信息解答问题:(1)此次共调查了多少人?(2)求“年龄岁”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.
参考答案一、选择题(每小题3分,共30分)1、D【解析】设实际参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发时每名同学分担的车费为:,根据每个同学比原来少摊了1元钱车费即可得到等量关系.解:设实际参加游览的同学共x人,
根据题意得:=1.
故选D.“点睛”本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.2、C【分析】利用三角形的外角定理及内角定理推出∠ADC与∠B的关系,进而代入数据求出结果.【详解】设的两个外角为、.则(三角形的内角和定理),利用三角形内角与外角的关系:三角形的任一外角等于和它不相邻的两个内角之和.可知,∴.故选:.【点睛】本题考查三角形的内角和定理及外角定理,熟记基本定理并灵活运用是解题关键.3、B【解析】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.4、C【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以An为顶点的底角度数.【详解】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以An为顶点的底角度数是()n﹣1×75°.故选:C.【点睛】本题考查等腰三角形的性质和三角形外角的性质,解题的关键是根据这两个性质求出∠DA2A1,∠EA3A2及∠FA4A3的度数,探索其规律.5、B【分析】作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP=16﹣x=CE,依据Rt△BCE中,EB2+BC2=CE2,即可得到82+x2=(16﹣x)2,进而得出BC的长.【详解】解:如图所示,作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP=16﹣x=CE,∵∠BAD=90°,AD∥BC,∴∠ABC=90°,∴Rt△BCE中,EB2+BC2=CE2,∴82+x2=(16﹣x)2,解得x=6,∴BC=6,故选B.【点睛】本题考查勾股定理的应用和三角形的周长,解题的关键是掌握勾股定理的应用和三角形的周长的计算.6、D【解析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可判断.【详解】﹣π<﹣<0<1.则最小的数是﹣π.故选:D.【点睛】本题考查了实数大小的比较,理解任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小是关键.7、D【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定是否是函数.【详解】解:A、,当x取值时,y有唯一的值对应,故选项不符合;B、,当x取值时,y有唯一的值对应,故选项不符合;C、,当x取值时,y有唯一的值对应,故选项不符合;;D、,当x取值时,如x=1,y=1或-1,故选项符合;故选:D.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.8、D【分析】根据自驾人数及其对应的百分比可得样本容量,根据各部分百分比之和等于1可得其它m的值,用总人数乘以对应的百分比可得选择公共交通出行的人数,利用样本估计总体思想可得选择自驾方式出行的人数.【详解】A.本次抽样调查的样本容量是2000÷40%=5000,此选项正确;
B.扇形统计图中的m为1-(50%+40%)=10%,此选项正确;
C.样本中选择公共交通出行的约有5000×50%=2500(人),此选项正确;
D.若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有5×40%=2(万人),此选项错误;
故选:D.【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.9、B【解析】作DE⊥BC于E,根据角平分线的性质得到DE=AD=3,根据三角形的面积公式计算即可.【详解】解:作DE⊥BC于E,由基本作图可知,BP平分∠ABC,
∵AP平分∠ABC,∠A=90°,DE⊥BC,
∴DE=AD=3,
∴△BDC的面积,
故选:B.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10、A【分析】如果设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,则一共送了x(x﹣1)张,再根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.【详解】设数学兴趣小组人数为x人,每名学生送了(x﹣1)张,共有x人,根据“共互送了1张贺年卡”,可得出方程为x(x﹣1)=1.故选A.【点睛】本题考查了一元二次方程的应用.解题的关键是读清题意,找准数量关系,列出方程.二、填空题(每小题3分,共24分)11、1【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【详解】在Rt△ABC中:
∵∠CAB=10°,BC=17米,AC=8米,
∴(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,
∴(米),
∴(米),∴(米),
答:船向岸边移动了1米.
故答案为:1.【点睛】本题主要考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.12、-1【解析】∵点P(3,a)关于y轴的对称点为Q(b,2),∴a=2,b=−3,∴a+b=2+(−3)=−1.故答案为−1.13、乙【分析】根据方差的意义:方差越小则波动越小,稳定性也越好,即可得出结论.【详解】解:∵>∴它们的数学测试成绩较稳定的是乙故答案为:乙.【点睛】此题考查的是方差的意义,掌握方差越小则波动越小,稳定性也越好是解决此题的关键.14、3.2【分析】根据近似数的精确度,用四舍五入法,即可求解.【详解】近似数3.1415926用四舍五入法精确到1.111的结果为3.2.故答案为:3.2.【点睛】本题主要考查近似数的精确度,掌握四舍五入法,是解题的关键.15、【分析】根据题意先求出a和b的值,并代入不等式进而解出不等式即可.【详解】解:,解得,∵不等式组的解集为,∴,解得,将代入不等式即有,解得.故答案为:.【点睛】本题考查解一元一次不等式组以及解一元一次不等式,熟练掌握相关求解方法是解题的关键.16、80°或40°【分析】根据已知条件,先设出三角形的两个角,然后进行讨论,列方程求解即可.【详解】解:在等腰△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,则顶角∠B=80°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,即顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为80°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.17、5cm或cm【分析】分两种情况考虑:BC为斜边,BC为直角边,利用勾股定理求出AC的长即可.【详解】若BC为直角边,
∵AB=3cm,BC=4cm,
∴AC=(cm),若BC为斜边,
∵AB=3cm,BC=4cm,
∴AC=(cm),综上所述,AC的长为cm或cm.故答案为:cm或cm.【点睛】本题考查了勾股定理的应用,在解答此题时要注意进行分类讨论,不要漏解.18、:①③④【分析】根据函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:由图象可得,乙晚出发1小时,故①正确;∵3-1=2小时,∴乙出发2小时后追上甲,故②错误;∵12÷3=4千米/小时,∴甲的速度是4千米/小时,故③正确;∵相遇后甲还需8÷4=2小时到B地,相遇后乙还需8÷(12÷2)=小时到B地,∴乙先到达B地,故④正确;故答案为:①③④.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.三、解答题(共66分)19、(1)A(0,5)、B(5,0);(2);(3).【分析】(1)先根据非负数的性质求出a、b的值,进而可得结果;(2)先根据余角的性质证得∠DAO=∠CBD,进而可根据ASA证明△ADO≌△BEO,可得,进一步即可得出d和m的关系式;(3)过点作于,交CB延长线于点,根据四边形的内角和和平角的定义易得,从而可根据AAS证明△OAM≌△OBN,可得,可得CO是直角∠ACB的平分线,进一步即可推出,过点作于,由等腰直角三角形的性质可得,进而可得,然后即可根据SAS证明△AOF≌△OBK,可得,然后再利用等腰直角三角形的性质和角平分线的性质得出BC和AC的关系,进而可得结果.【详解】解:(1)∵,,,∴A(0,5)、B(5,0);(2)如图2,,,,,∴∠DAO=∠CBD,∵AO=BO=5,∠DOA=∠EOB=90°,∴△ADO≌△BEO(ASA),,;(3)过点作于,交CB延长线于点,如图4,,∵四边形的内角和为,,,,,,∴△OAM≌△OBN(AAS),,,,,,过点作于,,,,,,,,∴△AOF≌△OBK(SAS),,,过点作于,,,.【点睛】本题以平面直角坐标系为载体,主要考查了非负数的性质、全等三角形的判定和性质、角平分线的判定和性质、等腰直角三角形的判定和性质等知识,综合性强、难度较大,属于试卷的压轴题,正确添加辅助线、灵活应用全等三角形和等腰直角三角形的判定和性质是解题的关键.20、;当时,原式【分析】根据分式的加法和除法可以化简题目中的式子,然后从且为整数中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】解:,∵且为整数,
∴当m=0时,原式【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21、5≤c<1.【分析】根据a2+b2=10a+8b﹣41,可以求得a、b的值,由a,b,c为正整数且是△ABC的三边长,c是△ABC的最长边,可以求得c的值,本题得以解决.【详解】解:∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,∴a﹣5=0,b﹣4=0,.解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<1.【点睛】本题考查配方法的应用、非负数的性质:偶次方,解题的关键是明确题意,明确配方法和三角形三边的关系.22、(1)9;(1);(3),-1【分析】(1)根据平方根和立方根的性质进行化简,然后进行运算即可;(1)根据积的乘方,幂的乘方和同底数幂的除法进行运算即可;(3)根据多项式乘以多项式的运算法则,进行化简,再计算即可.【详解】解(1)原式=6+1+1=9;(1)原式;(3)原式==当3b-a=-1时原式=-1.【点睛】本题考查了平方根,立方根,积的乘方,幂的乘方,同底数幂的除法和多项式乘以多项式,掌握运算法则是解题关键.23、证明见解析【解析】应用三角形全等的判定定理(SSS)进行证明.【详解】,,即,在和中,,,.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定方法并具有审题的能力.24、证明见解析.【解析】由等腰三角形性质及三角形内角和定理,可求出∠ABD=∠C=BDC.再据等角对等边,及等量代换即可求解.试题解析:∵AB=AC,∠A=36°∴∠ABC=∠C=(180°-∠A)=×(180°-36°)=72°,又∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=×72°=36°,∠BDC=∠A+∠ABD=36°+36°=72°,∴∠C=∠BDC,∠A=AB,∴AD=BD=BC.25、(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学中队队干部竞选主题班会《我们是少先队的小主人》
- 2022年三年级语文下册第七单元主题阅读+答题技巧(含答案、解析)部编版
- 2024年汕头小型客运从业资格证考试
- 2024年双鸭山客运资格证仿真考试题
- 2024年西安客运从业资格证理论考试题库
- 2024年石家庄客运从业资格证的考题
- 吉首大学《国际市场营销》2021-2022学年第一学期期末试卷
- 《机械设计基础》-试卷13
- 吉林艺术学院《舞蹈教育学》2021-2022学年第一学期期末试卷
- 吉林艺术学院《乐理与视唱》2021-2022学年第一学期期末试卷
- 劳动合同-高管补充协议20110520
- 北师大版二年级数学上册第九单元《除法》知识点梳理复习ppt
- 店长转正考核(员工评价)
- 9-2 《第三方过程评估淋蓄水检查内容》(指引)
- 铁路企业高技能人才队伍建设的对策与措施
- 亚马逊品牌授权书(英文模板)
- TTJCA 0007-2022 住宅室内装饰装修工程施工验收规范
- 构造柱工程施工技术交底
- 流体力学笔记整理
- 现代简约风格发展趋势
- 路缘石滑模施工工法
评论
0/150
提交评论