上海市普陀区名校2025届数学八上期末联考试题含解析_第1页
上海市普陀区名校2025届数学八上期末联考试题含解析_第2页
上海市普陀区名校2025届数学八上期末联考试题含解析_第3页
上海市普陀区名校2025届数学八上期末联考试题含解析_第4页
上海市普陀区名校2025届数学八上期末联考试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市普陀区名校2025届数学八上期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=60°,∠D=20°,则∠P的度数为()A.15° B.20° C.25° D.30°2.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=A.40° B.50°C.60° D.75°3.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60° B.95°,105° C.30°,60° D.90°,90°4.计算÷×结果为()A.3 B.4 C.5 D.65.下列各数,,,,,,中,无理数有()A.2个 B.3个 C.4个 D.5个6.等腰三角形有一个外角是110°,则其顶角度数是()A.70° B.70°或40° C.40° D.110°或40°7.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是().A.带其中的任意两块去都可以 B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了 D.带1、4或2、4或3、4去均可8.如图,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,且EH=EB.下列四个结论:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你认为正确的序号是()A.①②③ B.①③④ C.②③④ D.①②③④9.已知一次函数,函数值随自变量的增大而减小,那么的取值范围是()A. B. C. D.10.下列各式是最简分式的是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是_____.12.若等腰三角形的一个内角比另一个内角大,则等腰三角形的顶角的度数为________.13.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=98°,若∠1=35°,则∠2=_____度.14.如图,直线分别与轴、轴交于点、点,与直线交于点,且直线与轴交于点,则的面积为___________.15.在实数π、、﹣、、0.303003…(相邻两个3之间依次多一个0)中,无理数有_____个.16.在中,,,,则________.17.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是__________.18.如图,在平面直角坐标系中,、、、…、均为等腰直角三角形,且,点、、、……、和点、、、……、分别在正比例函数和的图象上,且点、、、……、的横坐标分别为1,2,3…,线段、、、…、均与轴平行.按照图中所反映的规律,则的顶点的坐标是_____.(其中为正整数)三、解答题(共66分)19.(10分)“六一”期间,小张购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:(1)小张如何进货,使进货款恰好为1300元?(2)要使销售文具所获利润最大,且所获利润不超过进货价格的40%,请你帮小张设计一个进货方案,并求出其所获利润的最大值.20.(6分)某校八年级班学生利用双休日时间去距离学校的博物馆参观.一部分学生骑自行车先走,过了后,其余学生乘汽车沿相同路线出发,结果他们同时到达,己知汽车的速度是骑车学生速度的倍,求骑车学生的速度和汽车的速度.21.(6分)计算:22.(8分)已知关于x,y的二元一次方程组的解满足x=y,求m的值.23.(8分)如图,中,,,点、、分别在、、上,且,.求的度数.24.(8分)在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3)点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.25.(10分)如图,为轴上一个动点,(1)如图1,当,且按逆时针方向排列,求点的坐标.(图1)(2)如图2,当,且按顺时针方向排列,连交轴于,求证:(图2)(3)如图3,m>2,且按顺时针方向排列,若两点关于直线的的对称点,画出图形并用含的式子表示的面积图326.(10分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点的坐标分别为.(1)请作出关于y轴对称的;(2)在y轴上找一点P,使最小;(3)在x轴上找一点Q,使最大.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据三角形的外角性质即可求出答案.【详解】解:延长AC交BD于点E,设∠ABP=α,∵BP平分∠ABD,∴∠ABE=2α,∴∠AED=∠ABE+∠A=2α+60°,∴∠ACD=∠AED+∠D=2α+80°,∵CP平分∠ACD,∴∠ACP=∠ACD=α+40°,∵∠AFP=∠ABP+∠A=α+60°,∠AFP=∠P+∠ACP∴α+60°=∠P+α+40°,∴∠P=20°,故选B.【点睛】此题考查三角形,解题的关键是熟练运用三角形的外角性质,本题属于基础题型.2、B【解析】分析:本题要求∠2,先要证明Rt△ABC≌Rt△ADC(HL),则可求得∠2=∠ACB=90°-∠1的值.详解:∵∠B=∠D=90°在Rt△ABC和Rt△ADC中,∴Rt△ABC≌Rt△ADC(HL)∴∠2=∠ACB=90°-∠1=50°.故选B.点睛:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.3、D【分析】根据两个直角互补的定义即可判断.【详解】解:∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.4、B【解析】===.故选B.5、B【分析】整数和分数统称为有理数,无限不循环小数统称为无理数,据此定义逐项分析判断.【详解】解:,,,为有理数;是无理数,是无理数,,为开方开不尽的数,为无理数,为开方开不尽的数,为无理数,故无理数有3个,故选B.【点睛】本题考查算术平方根、立方根、无理数等知识,是基础考点,难度较易,掌握相关知识是解题关键.6、B【分析】题目给出了一个外角等于110°,没说明是顶角还是底角的外角,所以要分两种情况进行讨论.【详解】解:①当110°角为顶角的外角时,顶角为180°﹣110°=70°;②当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°.故选B.【点睛】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.7、D【解析】试题分析:②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选D.点评:本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.8、C【分析】①根据AD⊥BC,若∠ABC=45°则∠BAD=45°,而∠BAC=45°,很明显不成立;

②③可以通过证明△AEH与△CEB全等得到;

④CE⊥AB,∠BAC=45°,所以是等腰直角三角形.【详解】①∵CE⊥AB,EH=EB,∴∠EBH=45°,∴∠ABC>45°,故①错误;∵CE⊥AB,∠BAC=45°,∴AE=EC,在△AEH和△CEB中,,∴△AEH≌△CEB(SAS),∴AH=BC,故选项②正确;又EC=EH+CH,∴AE=BE+CH,故选项③正确.∵AE=CE,CE⊥AB,所以△AEC是等腰直角三角形,故选项④正确.∴②③④正确.故选B.【点睛】本题主要利用全等三角形的对应边相等进行证明,找出相等的对应边后,注意线段之间的和差关系.9、C【解析】解:由题意得:1+2m<0,解得:m<.故选C.10、B【分析】依次化简各分式,判断即可.【详解】A、,选项错误;B、无法再化简,选项正确;C、,选项错误;D、,选项错误;故选B.【点睛】本题是对最简分式的考查,熟练掌握分式化简是解决本题的关键.二、填空题(每小题3分,共24分)11、2【解析】∵四边形ABCD是平行四边形,AD=6,∴BC=AD=6,又BE=2,∴EC=1.又∵DE平分∠ADC,∴∠ADE=∠EDC.∵AD∥BC,∴∠ADE=∠DEC.∴∠DEC=∠EDC.∴CD=EC=1.∴□ABCD的周长是2×(6+1)=2.12、80°或40°【分析】根据已知条件,先设出三角形的两个角,然后进行讨论,列方程求解即可.【详解】解:在等腰△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,则顶角∠B=80°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,即顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为80°或40°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13、1.【分析】由直线a∥b,利用“两直线平行,内错角相等”可得出∠3的度数,结合∠2+∠3+∠BAC=180°及∠BAC=98°,即可求出∠2的度数.【详解】解:如图,∵直线a∥b,∴∠3=∠1=35°,∵∠2+∠3+∠BAC=180°,∠BAC=98°,∴∠2=180°﹣∠3﹣∠BAC=180°﹣35°﹣98°=1°,故答案为:1.【点睛】本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.14、4【分析】先根据函数解析式分别求出点A、B、C、D的坐标,再根据的面积=△ACD的面积-△BCD的面积求出答案.【详解】令中y=0,得x=3,∴D(3,0),令中x=0,得y=4,∴A(0,4),解方程组,得,∴B(,2),过点B作BH⊥x轴,则BH=2,令中y=0,得x=-1,∴C(-1,0),∴CD=4,,∴的面积=S△ACD-S△BCD==,故答案为:4.【点睛】此题考查一次函数与坐标轴的交点坐标的求法,两个一次函数交点的坐标的求法,理解方程及方程组与一次函数的关系是解题的关键.15、3【分析】根据无理数的概念,即可求解.【详解】无理数有:π、、1.313113…(相邻两个3之间依次多一个1)共3个.故答案为:3【点睛】本题主要考查无理数的概念,掌握“无限不循环小数是无理数”是解题的关键.16、【分析】根据勾股定理直接求出AB长即可.【详解】∵∠C=90°,BC=1,AC=2,∴AB=,故答案为:.【点睛】本题是对勾股定理的考查,熟练掌握勾股定理是解决本题的关键.17、【分析】从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.【详解】如图,在AC上截取AE=AN,连接BE∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,∵AM=AM∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=,即BE取最小值为,∴BM+MN的最小值是.【点睛】解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.18、【分析】当x=1代入和中,求出A1,B1的坐标,再由△A1B1C1为等腰直角三角形,求出C1的坐标,同理求出C2,C3,C4的坐标,找到规律,即可求出的顶点的坐标.【详解】当x=1代入和中,得:,,∴,,∴,∵△A1B1C1为等腰直角三角形,∴C1的横坐标为,C1的纵坐标为,∴C1的坐标为;当x=2代入和中,得:,,∴,,∴,∵△A2B2C2为等腰直角三角形,∴C2的横坐标为,C2的纵坐标为,∴C2的坐标为;同理,可得C3的坐标为;C4的坐标为;∴的顶点的坐标是,故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,正确求出C1、C2、C3、C4的坐标找到规律是解题的关键.三、解答题(共66分)19、(4)A文具为4只,B文具60只;(4)各进50只,最大利润为500元.【解析】试题分析:(4)设A文具为x只,则B文具为(400﹣x)只,根据题意列出方程解答即可;(4)设A文具为x只,则B文具为(400﹣x)只,根据题意列出函数解答即可.试题解析:(4)设A文具为x只,则B文具为(400﹣x)只,可得:40x+45(400﹣x)=4400,解得:x=4.答:A文具为4只,则B文具为400﹣4=60只;(4)设A文具为x只,则B文具为(400﹣x)只,可得:(44﹣40)x+(44﹣45)(400﹣x)≤4%[40x+45(400﹣x)],解得:x≥50,设利润为y,则可得:y=(44﹣40)x+(44﹣45)(400﹣x)=4x+800﹣8x=﹣6x+800,因为是减函数,所以当x=50时,利润最大,即最大利润=﹣50×6+800=500元.考点:4.一次函数的应用;4.一元一次方程的应用;4.一元一次不等式的应用.20、骑车学生的速度为:15km/h,汽车的速度为:30km/h【分析】已知路程,求速度,设汽车学生的速度为xkm/h,则汽车的速度为2xkm/h,根据题意可得,乘坐汽车比骑自行车少用29分钟,据此列方程求解.【详解】解:设汽车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意可得,解得:x=15经检验:x=15是原方程的解,则2x=30答:骑车学生的速度为:15km/h,汽车的速度为30km/h.【点睛】本题主要考查分式方程的应用,关键要掌握列分式方程的一般步骤:即审清题意,弄清已知量和未知量、找等量关系、设未知数、列方程、解方程、验根、写出答案.21、(1);(2)1.【分析】(1)先根据积的乘方运算法则化简单项式,再利用单项式的乘除法法则进行运算即可;(2)先根据乘法公式进行运算,再进行整式的加减运算即可.【详解】解:(1)原式;(2)原式=.【点睛】本题考查整式的混合运算,掌握基本运算法则是解题的关键.22、m=1.【分析】直接根据题意x=y代入求出m的值即可.【详解】解:∵关于x,y的二元一次方程组的解满足x=y,∴,故2m,解得:m=1.【点睛】此题主要考查了二元一次方程组的解,正确代入x=y是解题关键.23、65°【分析】根据等腰三角形的性质得到,再证明,得到,再根据三角形额内角和与平角的性质即可求解.【详解】由题意:,,有又,,∴,∴又,∴【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等腰三角形的性质及全等三角形的判定与性质.24、(1)如图见解析;(2)如图见解析,C'的坐标为(﹣5,5);(3)△ABC是直角三角形.【解析】试题分析:(1)根据两点的坐标建立平面直角坐标系即可;

(2)作出各点关于轴的对称点,顺次连接即可;

(3)根据勾股定理的逆定理判断出的形状即可.试题解析:(1)如图所示:(2)如图所示:即为所求:C'的坐标为(3)∴∴是直角三角形.点睛:一个三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.25、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论