版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖南省永州市八年级数学第一学期期末复习检测模拟试题题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,和都是等腰直角三角形,,,的顶点在的斜边上,若,则两个三角形重叠部分的面积为()A.6 B.9 C.12 D.142.如果三角形的一个外角小于与它相邻的内角,那么这个三角形一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.任意三角形3.在的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A. B. C. D.4.已知三角形的两边长分别是3和8,则此三角形的第三边长可能是()A.9 B.4 C.5 D.135.下列命题,假命题是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.一组对边平行,另一组对边相等的四边形是平行四边形6.如图,在△ABC中,AB=AD=DC,∠BAD=26°,则∠C的度数是()A.36° B.77° C.64° D.38.5°7.如图所示,四边形是边长为的正方形,,则数轴上点所表示的数是()A. B. C. D.8.等腰三角形的一个外角为80°,则它的底角为()A.100° B.80° C.40° D.100°或40°9.一个正多边形,它的一个内角恰好是一个外角的倍,则这个正多边形的边数是()A.八 B.九 C.十 D.十二10.下列线段长能构成三角形的是()A.3、4、7 B.2、3、6 C.5、6、11 D.4、7、1011.有理数的算术平方根是()A. B. C. D.12.下列各式中,相等关系一定成立的是()A.B.C.D.二、填空题(每题4分,共24分)13.已知x,y满足方程的值为_____.14.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.15.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占60%,面试成绩占40%,应聘者张华的笔试成绩和面试成绩分别为95分和90分,她的最终得分是_____分.16.若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是_____.17.在,,,,这五个数中,无理数有________个.18.如图,将长方形ABCD的边AD沿折痕AE折叠,使点D落在BC上的F处,若AB=5,AD=13,则EF=_____.三、解答题(共78分)19.(8分)在平面直角坐标系中,B(2,2),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.20.(8分)如图1,△ABC是边长为4cm的等边三角形,边AB在射线OM上,且OA=6cm,点D从点O出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形(下列图形中任选其一进行证明);(2)如图2,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出运动时间t的值;若不存在,请说明理由.21.(8分)如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求直线AC的函数关系式;(3)求点B的坐标.22.(10分)如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=1.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.23.(10分)先化简:÷(),再从﹣3<x<2的范围内选取一个你最喜欢的整数代入,求值.24.(10分)如图所示的方格纸中,每个小方格的边长都是1,点A(﹣4,1)B(﹣3,3)C(﹣1,2)(1)作△ABC关于y轴对称的△A′B′C′;(2)在x轴上找出点P,使PA+PC最小,并直接写出P点的坐标.25.(12分)如图所示,在中,,D是上一点,过点D作于点E,延长和,相交于点F,求证:是等腰三角形.26.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.据上述条件解决下列问题:①规定期限是多少天?写出解答过程;②在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?
参考答案一、选择题(每题4分,共48分)1、C【分析】先根据已知条件,证明图中空白的三个小三角形相似,即,根据,求出AF的值,再求出BF的值,由于△ACF与△ABC同高,故面积之比等于边长之比,最后根据AF与BF的关系,得出△ACF与△ABC的面积之比,由于△ABC的面积可求,故可得出阴影部分的面积.【详解】根据题意,补全图形如下:图中由于和都是等腰直角三角形,故可得出如下关系:,由此可得,继而得到,令,则,根据勾股定理,得出:那么,解出,由于△ACF与△ABC同高,故面积之比等于边长之比,则故阴影部分的面积为12.【点睛】本题关键在于先证明三个三角形相似,得出对应边的关系,最后根据已知条件算出边长,得出阴影部分面积与已知三角形面积之比,故可得出阴影部分的面积.2、C【解析】依据三角形的外角与它相邻的内角互为邻补角,可判断出此三角形有一内角为钝角,从而得出这个三角形是钝角三角形.【详解】解:∵三角形的一个外角与它相邻的内角和为180°,而这个外角小于它相邻的内角,∴与它相邻的这个内角大于90°,∴这个三角形是钝角三角形.故选:C.【点睛】本题考查的是三角形的外角性质,解题的关键是熟练掌握三角形的外角与它相邻的内角互为邻补角.3、D【解析】直接利用轴对称图形的定义判断得出即可.【详解】解:A.是轴对称图形,不合题意;B.是轴对称图形,不合题意;C.是轴对称图形,不合题意;D.不是轴对称图形,符合题意;故选:D.【点睛】本题主要考查轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.4、A【分析】先根据三角形的三边关系求出第三边的取值范围,然后从各选项中找出符合此范围的数即可.【详解】解:∵三角形的两边长分别是3和8∴8-3<第三边的长<8+3解得:5<第三边的长<11,由各选项可得,只有A选项符合此范围故选A.【点睛】此题考查的是已知三角形的两边长,求第三边的取值范围,掌握三角形的三边关系是解决此题的关键.5、D【分析】根据平行四边形的判定定理依次判断即可得到答案.【详解】解:两组对边分别平行的四边形是平行四边形,A是真命题;两组对边分别相等的四边形是平行四边形,B是真命题;对角线互相平分的四边形是平行四边形,C是真命题;一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,D是假命题;故选:D.【点睛】此题考查命题的分类:真命题和假命题,正确的命题是真命题,错误的命题是假命题,熟记定义并熟练运用其解题是关键.6、D【分析】根据等腰三角形两底角相等求出∠B=∠ADB,根据等边对等角可得∠C=∠CAD,然后利用三角形内角和定理列式进行计算即可解答.【详解】∵AB=AD,∠BAD=26°,∴∠B=(180°-∠BAD)=(180°-26°)=77°,∵AD=DC,∴∠C=∠CAD,在△ABC中,∠BAC+∠B+∠C=180°,即26°+∠C+∠C+77°=180°,解得:∠C=38.5°,故选:D.【点睛】本题主要考查等腰三角形的性质:等腰三角形两底角相等、等边对等角,掌握等腰三角形的性质是解题的关键.7、D【分析】连接AC,根据勾股定理求出其长度,,再减1求相反数即为点P表示的数.【详解】解:如图,连接AC,在中,,所以,所以,所以点表示的数为.故选:D.【点睛】本题主要考查在数轴上用勾股定理求无理数长度的线段,熟练掌握该方法是解答关键.8、C【解析】试题分析:根据三角形的外角性质和等腰三角形的性质求解.解:∵等腰三角形的一个外角为80°∴相邻角为180°﹣80°=100°∵三角形的底角不能为钝角∴100°角为顶角∴底角为:(180°﹣100°)÷2=40°.故选C.考点:等腰三角形的性质.9、C【分析】可设正多边形一个外角为x,则一个内角为4x,根据一个内角和一个外角互补列方程解答即可求出一个外角的度数,再根据多边形的外角和为360°解答即可.【详解】设正多边形一个外角为x,则一个内角为4x,根据题意得:x+4x=180°x=36°360°÷36°=10故这个正多边形为十边形.故选:C【点睛】本题考查的是正多边形的外角与内角,掌握正多边形的外角和为360°是关键.10、D【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解.【详解】解:A、3+4=7,不能构成三角形;B、2+3<6,不能构成三角形;C、5+6=11,不能构成三角形;D、4+7>10,能构成三角形.故选:D.【点睛】本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.11、C【解析】直接利用算术平方根的定义得出答案.【详解】81的算术平方根是:.
故选:C.【点睛】本题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.12、A【分析】用平方差公式和完全平方公式分别计算,逐项判断即可.【详解】解:A.,故A正确;B.应为,故B错误;C.应为,故C错误;D.应为,故D错误.故选A.【点睛】本题考查平方差公式及完全平方公式的计算.二、填空题(每题4分,共24分)13、【分析】根据二元一次方程组的加减消元法,即可求解.【详解】,①×5﹣②×4,可得:7x=9,解得:x=,把x=代入①,解得:y=,∴原方程组的解是:.故答案为:.【点睛】本题主要考查二元一次方程组的解法,掌握加减消元法,是解题的关键.14、5<a<1【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.【详解】解:根据三角形的三边关系可得:8-3<a<8+3,
解得:5<a<1,
故答案为:5<a<1.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.15、1【分析】利用加权平均数的计算公式,进行计算即可.【详解】95×60%+90×40%=1(分)故答案为:1.【点睛】本题主要考查加权平均数的实际应用,掌握加权平均数的计算公式,是解题的关键.16、-10【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y),根据关于y轴对称的点,纵坐标相同,横坐标互为相反数得出m,n的值,从而得出mn.【详解】解:∵点A(2,m)关于y轴的对称点是B(n,5),∴n=-2,m=5,∴mn=-10.故答案为-10.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.关于y轴对称的点,纵坐标相同,横坐标互为相反数,是需要识记的内容.17、【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:在,,,,这五个数中,无理数有,这两个数,【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18、【分析】由翻折的性质得到AF=AD=13,在Rt△ABF中利用勾股定理求出BF的长,进而求出CF的长,再根据勾股定理可求EC的长.【详解】解:∵四边形ABCD是长方形,∴∠B=90°,∵△AEF是由△ADE翻折,∴AD=AF=13,DE=EF,在Rt△ABF中,AF=13,AB=5,∴BF===12,∴CF=BC﹣BF=13﹣12=1.∵EF2=EC2+CF2,∴EF2=(5﹣EF)2+1,∴EF=,故答案为:.【点睛】本题考查勾股定理的综合应用、图形的翻折,解题的关键是熟练掌握勾股定理和翻折的性质.三、解答题(共78分)19、(1)①见解析;②点C的坐标为(0,﹣4)或(0,4);(2)2【分析】(1)①证明△ABD≌△AOC(SAS),得出∠ABD=∠AOC=90°即可;②存在两种情况:当点D落在第二象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,﹣4);当点D落在第一象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,4);(2)作ON'⊥AB于N',作MN⊥OB于N,此时OM+MN的值最小,由等边三角形的性质和勾股定理求出ON=2即可.【详解】解:(1)①证明:∵△OAB和△ACD是等边三角形,∴BO=AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠BAD=∠OAC,在△ABD和△AOC中,,∴△ABD≌△AOC(SAS),∴∠ABD=∠AOC=90°,∴AB⊥BD;②解:存在两种情况:当点D落在第二象限时,如图1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,﹣4);当点D落在第一象限时,如图1﹣1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,4);综上所述,若△ABD是等腰三角形,点C的坐标为(0,﹣4)或(0,4);(2)解:作ON'⊥AB于N',作MN⊥OB于N,如图2所示:∵△OAB是等边三角形,ON'⊥AB,FB是OA边上的中线,∴AN'=AB=2,BF⊥OA,BF平分∠ABO,∵ON'⊥AB,MN⊥OB,∴MN=MN',∴N'和N关于BF对称,此时OM+MN的值最小,∴OM+MN=OM+MN'=ON,∵ON===2,∴OM+MN=2;即OM+NM的最小值为2.【点睛】本题是三角形综合题目,考查了等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的性质以及最小值问题;本题综合性强,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.20、(1)见解析;(2)存在,当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【分析】(1)由旋转的性质可得CD=CE,∠DCA=∠ECB,由等边三角形的判定可得结论;(2)分四种情况,由旋转的性质和直角三角形的性质可求解.【详解】(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)解:存在,①当0≤t<6s时,由旋转可知,,,若,由(1)可知,△CDE是等边三角形,∴,∴,∴,∵,∴,∵,∴,∴,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2s;②当6<t<10s时,由∠DBE=120°>90°,∴此时不存在;③t=10s时,点D与点B重合,∴此时不存在;④当t>10s时,由旋转的性质可知,∠CBE=60°又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4cm,∴OD=14cm,∴t=14÷1=14s;综上所述:当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题是三角形综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,利用分类讨论思想解决问题是本题的关键.21、(1)(5,0);(2);(3)(2,4).【分析】(1)利用勾股定理求出OA的长即可解决问题;(2)利用待定系数法将点A、C的坐标代入一次函数表达式,求出k、b的值,再代回一次函数表达式中即可解决问题;(3)只要证明AB=AC=5,ABx轴,即可解决问题.【详解】解:(1)点A(﹣3,4),OA==5,又OA=OC,即OC=5,点C在x轴的正半轴上,点C(5,0),故答案为:(5,0);(2)设直线AC的表达式为y=kx+b,将点A、C的坐标代入一次函数表达式:y=kx+b,得:,解得:,即直线AC的函数关系式为:;(3)△ABC是△AOC沿AC折叠得到,AB=OA,BC=OC,又OA=OC,OA=AB=BC=OC,四边形ABCO为菱形,由(1)知,点C(5,0),OC=5,AB=OC=5,又四边形ABCO为菱形,点C在x轴上,ABOCx轴,点A坐标为(﹣3,4),ABx轴,AB=5,点B的坐标为:(2,4).【点睛】本题属于三角形综合题,考查了三角形折叠,菱形的性质以及待定系数法求一次函数解析式等知识,熟练掌握并应用这些知识是解题的关键.22、(1)∠ADC是直角,理由详见解析;(2).【分析】(1)利用勾股定理的逆定理,证明△ADC是直角三角形,即可得出∠ADC是直角;(2)根据三角形的中线的定义以及直角三角形的性质解答即可.【详解】(1)∠ADC是直角,理由如下:∵DE是△ADC的高,∴∠AED=∠CED=90°,在Rt△ADE中,∠AED=90°,∴AD2=AE2+DE2=12+22=20,同理:CD2=5,∴AD2+CD2=25,∵AC2=(1+1)2=25,∴AD2+CD2=AC2,∴△ADC是直角三角形,∴∠ADC是直角;(2)∵AD是△ABC的中线,∠ADC=90°,∴AD垂直平分BC,∴AB=AC=5,在Rt△ADB中,∠ADB=90°,∵点F是边AB的中点,∴DF=.【点睛】本题主要考查勾股定理的逆定理和直角三角形的性质定理,掌握直角三角形斜边上的中线等于斜边的一半,是解题的关键.23、;取x=-2原式=【分析】首先将括号里面通分,进而将能因式分解的分子与分母因式分解,即可化简,再利用分式有意的条件得出即可.【详解】解:原式====∵∴取x=-2∴原式=【点睛】此题主要考查了分式的化简求值,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年银川客运资格证考试答题
- 吉首大学《教学技能训练2》2021-2022学年第一学期期末试卷
- 吉首大学《传感器原理及应用》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷25
- 吉林艺术学院《音乐创作软件基础》2021-2022学年第一学期期末试卷
- 吉林艺术学院《三维设计基础与应用》2021-2022学年第一学期期末试卷
- 2024年共同合作农产品协议书模板
- 2024年供货合同范本21篇范文
- 2024年大宗交易互赔协议书模板
- 吉林师范大学《新闻伦理与法规》2021-2022学年第一学期期末试卷
- 《新中国的科技成就》
- 彭端淑《为学》与秦观《劝学》对比阅读(附答案解析与译文)
- 15.《我与地坛》课件2023-2024学年统编版高中语文必修上册
- 森林防火设备采购投标方案(技术标)
- 2024财务分析师岗位需求与职业规划
- 危险化学品经营企业安全生产奖惩制度范本
- 程式与意蕴-中国传统绘画
- 消防安全概述
- 食品储存不当的危害合理储存避免食物中毒
- 湖北省鄂东南联考2023-2024学年高一上学期期中考试物理
- 2023-2024学年北京北师大实验中学初二(上)期中物理试卷(含答案)
评论
0/150
提交评论