上海外国语大秀洲外国语学校2025届数学八年级第一学期期末教学质量检测试题含解析_第1页
上海外国语大秀洲外国语学校2025届数学八年级第一学期期末教学质量检测试题含解析_第2页
上海外国语大秀洲外国语学校2025届数学八年级第一学期期末教学质量检测试题含解析_第3页
上海外国语大秀洲外国语学校2025届数学八年级第一学期期末教学质量检测试题含解析_第4页
上海外国语大秀洲外国语学校2025届数学八年级第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海外国语大秀洲外国语学校2025届数学八年级第一学期期末教学质量检测试题教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在中,点是边上任一点,点分别是的中点,连结,若的面积为,则的面积为()A. B. C. D.2.如图是一段台阶的截面示意图,若要沿铺上地毯(每个调节的宽度和高度均不同),已知图中所有拐角均为直角.须知地毯的长度,至少需要测量()A.2次 B.3次 C.4次 D.6次3.如图,△ABC的两边AC和BC的垂直平分线分别交AB于D、E两点,若AB边的长为10cm,则△CDE的周长为()A.10cm B.20cm C.5cm D.不能确定4.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为()A.0.22×10﹣9 B.2.2×10﹣10 C.22×10﹣11 D.0.22×10﹣85.若分式在实数范围内有意义,则x的取值范围是()A. B. C. D.6.如图,点D、E在△ABC的边BC上,△ABD≌△ACE,下列结论不一定成立的是()A. B. C. D.7.判断以下各组线段为边作三角形,可以构成直角三角形的是()A.6,15,17 B.7,12,15 C.13,15,20 D.7,24,258.函数与的部分自变量和对应函数值如下:x-4-3-2-1y-1-2-3-4x-4-3-2-1y-9-6-30当时,自变量x的取值范围是()A. B. C. D.9.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.10.把19547精确到千位的近似数是()A. B. C. D.二、填空题(每小题3分,共24分)11.直线y=1x﹣1沿y轴向上平移1个单位,再沿x轴向左平移_____个单位得到直线y=1x+1.12.若一次函数(为常数)的图象经过点(,9),则____.13.如图,在中,,,,点在上,将沿折叠,点落在点处,与相交于点,若,则的长是__________.14.如图,已知中,,,,点D为AB的中点,如果点P在线段BC上以2厘米秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若当与全等时,则点Q运动速度可能为____厘米秒.15.己知点,,点在轴上运动,当的值最小时,点的坐标为___________.16.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为_______米.17.如图1所示,S同学把一张6×6的正方形网格纸向上再向右对折两次后按图画实线,剪去多余部分只留下阴影部分,然后展开摊平在一个平面内得到了一幅剪纸图案.T同学说:“我不用剪纸,我直接在你的图1②基础上,通过‘逆向还原’的方式依次画出相应的与原图形成轴对称的图形也能得出最后的图案.”画图过程如图2所示.对于图3中的另一种剪纸方式,请仿照图2中“逆向还原”的方式,在图4①中的正方形网格中画出还原后的图案,并判断它与图2中最后得到的图案是否相同.答:□相同;□不相同.(在相应的方框内打勾)18.在实数范围内分解因式:_______.三、解答题(共66分)19.(10分)如图,在等边中,分别为的中点,延长至点,使,连结和.(1)求证:(2)猜想:的面积与四边形的面积的关系,并说明理由.20.(6分)仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及的值.解:设另一个因式为,得,则,,解得,,∴另一个因式为,的值为.仿照例题方法解答:(1)若二次三项式的一个因式为,求另一个因式;(2)若二次三项式有一个因式是,求另一个因式以及的值.21.(6分)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到,请解答下列问题:(1)写出图2中所表示的数学等式____________________________________(2)根据整式乘法的运算法则,通过计算验证上述等式.(3)利用(1)中得到的结论,解决下面的问题:若,,则_________.22.(8分)如图,点A、、、在同一直线上,,AF∥DE,.求证:.23.(8分)如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.24.(8分)如图,已知与互为补角,且,(1)求证:;(2)若,平分,求证:.25.(10分)已知:如图,中,,中线和交于点.(1)求证:是等腰三角形;(2连接,试判断直线与线段的关系,并说明理由.26.(10分)利用我们学过的知识,可以推导出下面这个形式优美的等式:.该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐美、简洁美.(1)请你检验这个等式的正确性;(2)猜想:[].(3)灵活运用上面发现的规律计算:若,,,求的值.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据三角形中线及中位线的性质即可得到三角形面积之间的关系,进而由的面积即可得到的面积.【详解】∵G,E分别是FB,FC中点∴,∴∵∴∵F是AD中点∴,∵,∴∴,故选:C.【点睛】本题主要考查了三角形面积与中位线和中线的关系,熟练掌握相关性质定理是解决本题的关键.2、A【分析】根据平移的特点即可到达只需测量AH,HG即可得到地毯的长度.【详解】∵图中所有拐角均为直角∴地毯的长度AB+BC+CD+DE+EF+FG=AH+HG,故只需要测量2次,故选A.【点睛】本题主要运用平移的特征,把台阶的长平移成长方形的长,把台阶的高平移成长方形的宽,然后进行求解.3、A【解析】解:∵的两边BC和AC的垂直平分线分别交AB于D、E,∵边AB长为10cm,∴的周长为:10cm.故选A.【点睛】本题考查线段的垂直平分线上的点到线段两个端点的距离相等.4、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.表示时关键要正确确定a的值以及n的值.5、C【分析】根据分式的分母不等于零,可得答案.【详解】解:由题意,得:x+3≠0,解得x≠-3,故选C.【点睛】本题考查了分式有意义的条件,利用分母不等于零得出不等式是解题关键.6、A【分析】根据全等三角形的对应边相等、对应角相等逐一判断即可.【详解】∵△ABD≌△ACE,

∴BD=CE,

∴BE=CD,故B成立,不符合题意;

∠ADB=∠AEC,

∴∠ADE=∠AED,故C成立,不符合题意;

∠BAD=∠CAE,

∴∠BAE=∠CAD,故D成立,不符合题意;

AC不一定等于CD,故A不成立,符合题意.

故选:A.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.7、D【解析】根据勾股定理的逆定理逐一判断即可.【详解】A.因为62+152≠172,所以以6,15,17为边的三角形不是直角三角形,故A不符合题意;B.因为72+122≠152,所以以7,12,15为边的三角形不是直角三角形,故B不符合题意;C.因为132+152≠202,所以以13,15,20为边的三角形不是直角三角形,故C不符合题意D.因为72+242=252,所以以7,24,25为边的三角形是直角三角形,故D符合题意;故选D.【点睛】此题考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解决此题的关键.8、B【分析】根据表格可确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表格可得y1=k1x+b1中y随x的增大而减小,y1=k1x+b1中y随x的增大而增大.且两个函数的交点坐标是(-1,-3).

则当x<-1时,y1>y1.

故选:B.【点睛】本题考查了函数的性质,正确确定增减性以及两函数交点坐标是关键.9、D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;

B、右边不是积的形式,所以不是因式分解,故本选项不符合题意;

C、是整式的乘法,不是因式分解,故本选项不符合题意;

D、是因式分解,故本选项符合题意;

故选:D.【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.10、C【分析】先把原数化为科学记数法,再根据精确度,求近似值,即可.【详解】19547=≈.故选C.【点睛】本题主要考查求近似数。掌握四舍五入法求近似数,是解题的关键.二、填空题(每小题3分,共24分)11、2【分析】根据直线平移的规律:“左加右减,上加下减”,即可得到答案.【详解】直线y=2x﹣2沿y轴向上平移2个单位得到直线:y=2x﹣2+2=2x,再沿x轴向左平移2个单位得到直线y=2(x+2),即y=2x+2.故答案为:2.【点睛】本题主要考查直线的平移规律,掌握“左加右减,上加下减”的平移规律,是解题的关键.12、1【分析】把点(,9)代入函数解析式,即可求解.【详解】∵一次函数(为常数)的图象经过点(,9),∴,解得:b=1,故答案是:1.【点睛】本题主要考查一次函数图象上的点的坐标特征,掌握待定系数法,是解题的关键.13、【分析】利用平行线的性质及折叠的性质得到,即AB⊥CE,再根据勾股定理求出,再利用面积法求出CE.【详解】∵,∴,由折叠得:,∵,∴,∴,∴AB⊥CE,∵,,,∴,∵,∴,∴CE=,∴,∵,∴,∴,故答案为:.【点睛】此题考查平行线的性质,折叠的性质,勾股定理,利用面积法求三角形的高线,题中求出AB⊥CE是解题的关键.14、2或【分析】,表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD与CQ是对应边两种情况讨论求解即可.【详解】,,点D为AB的中点,,设点P、Q的运动时间为t,则,当时,,解得:,则,故点Q的运动速度为:厘米秒;当时,,,秒.故点Q的运动速度为厘米秒.故答案为2或厘米秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.15、(1,0)【分析】作P点关于x轴对称点P₁,根据轴对称的性质PM=P₁M,MP+MQ的最小值可以转化为QP₁的最小值,再求出QP₁所在的直线的解析式,即可求出直线与x轴的交点,即为M点.【详解】如图所示,作P点关于x轴对称点P₁,∵P点坐标为(0,1)∴P₁点坐标(0,﹣1),PM=P₁M连接P₁Q,则P₁Q与x轴的交点应满足QM+PM的最小值,即为点M设P₁Q所在的直线的解析式为y=kx+b把P₁(0,﹣1),Q(5,4)代入解析式得:解得:∴y=x-1当y=0时,x=1∴点M坐标是(1,0)故答案为(1,0)【点睛】本题主要考查轴对称-最短路线问题,关键是运用轴对称变换将处于同侧的点转换为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短来确定方案,使两条线段之和转化为一条线段.16、3.4×10-1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000034=3.4×10-1,

故答案为:3.4×10-1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17、不相同.【分析】根据轴对称图形的性质即可得结论.【详解】如图,在图4①中的正方形网格中画出了还原后的图案,它与图2中最后得到的图案不相同.故答:不相同.【点睛】本题考查了利用轴对称设计图案、剪纸问题,解决本题的关键是掌握轴对称性质.18、【分析】先把含未知数项配成完全平方,再根据平方差公式进行因式分解即可.【详解】故填:.【点睛】本题主要考查利用完全平方和平方差公式进行因式分解,熟练掌握公式是关键.三、解答题(共66分)19、(1)见解析;(2)相等,理由见解析.【分析】(1)直接利用三角形中位线定理得出DE∥BC,且DE=BC,再利用平行四边形的判定方法得出答案;

(2)分别过点A,D,作AM⊥DE,DN⊥BC,根据等底等高的三角形面积相等求得S△ADE=S△ECF,再根据S△ADE+S四边形BDEC=S△ECF+S四边形BDEC可得出结果.【详解】(1)证明:∵D,E分别为AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC.∵CF=BC,∴DE∥CF,DE=CF,∴四边形DEFC为平行四边形,∴CD=EF;(2)解:相等.理由如下:分别过点A,D,作AM⊥DE,DN⊥BC,则∠AMD=∠DNB=90°,∵DE∥BC,∴∠ADM=∠DBN.∵AD=DB,∴△ADM≌△DBN(AAS),∴AM=DN.又∵DE=CF,∴S△ADE=S△ECF(等底等高的三角形面积相等).∴S△ADE+S四边形BDEC=S△ECF+S四边形BDEC,∴△ABC的面积等于四边形BDEF的面积.【点睛】此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握相关性质和判定方法是解题关键.20、(1)另一个因式为;(2)另一个因式为,b的值为【分析】(1)设另一个因式为,根据例题的方法,列出等式并将等式右侧展开,然后利用对应系数法即可求出结论;(2)设另一个因式为,根据例题的方法,列出等式并将等式右侧展开,然后利用对应系数法即可求出结论.【详解】解:(1)设另一个因式为,得,则,,解得,,∴另一个因式为.(2)设另一个因式为,得,则,,解得,,∴另一个因式为,b的值为.【点睛】此题考查的是已知二次三项式和它的一个因式,求另一个因式,掌握例题中的方法和对应系数法是解决此题的关键.21、(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)见解析;(3)1【分析】(1)图2的面积一方面可以看作是边长为(a+b+c)的正方形的面积,另一方面还可以看成是3个边长分别为a、b、c的正方形的面积+2个边长分别为a、b的长方形的面积+2个边长分别为a、c的长方形的面积+2个边长分别为b、c的长方形的面积,据此解答即可;(2)根据多项式乘以多项式的法则计算验证即可;(3)将所求的式子化为:,然后整体代入计算即得结果.【详解】解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ba+b2+bc+ca+cb+c2=a2+b2+c2+2ab+2ac+2bc;所以(1)中的等式成立;(3).故答案为:1.【点睛】本题是完全平方公式的拓展应用,主要考查了对三数和的完全平方的理解与应用,正确理解题意、熟练掌握完全平方公式是解题的关键.22、详见解析.【分析】先根据平行线的性质求出∠A=∠D,再利用线段的加减证得AB=DC,即可用“SAS”证明三角形全等.【详解】∵AF∥DE∴∠A=∠D∵AC=DB∴AC-DB=DB-BC即AB=DC在△ABF和△DCE中,∵∴△ABF≌△DCE【点睛】本题考查的是三角形全等的判定,掌握三角形的各个判定定理是关键.23、证明见解析.【分析】欲证BE=CF,则证明两三角形全等,已经有两个条件,只要再有一个条件就可以了,而AC∥DF可以得出∠ACB=∠F,条件找到,全等可证.根据全等三角形对应边相等可得BC=EF,都减去一段EC即可得证.【详解】∵AC∥DF,∴∠ACB=∠F,在△ABC和△DEF中,∴△ABC≌△DEF(AAS);∴BC=EF,∴BC﹣CE=EF﹣CE,即BE=CF.考点:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论