版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市慈溪市2025届初三下学期期末数学试题理试题分类汇编注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游2.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为()A.2 B.3 C.5 D.73.下列运算结果正确的是()A.x2+2x2=3x4 B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5 D.2x2÷x2=x4.老师在微信群发了这样一个图:以线段AB为边作正五边形ABCDE和正三角形ABG,连接AC、DG,交点为F,下列四位同学的说法不正确的是()A.甲 B.乙 C.丙 D.丁5.tan60°的值是()A. B. C. D.6.抛物线的顶点坐标是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)7.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<28.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A.m>﹣2 B.m<﹣2C.m>2 D.m<29.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是()A.2 B. C.2 D.510.如图所示几何体的主视图是()A. B. C. D.11.如图,该图形经过折叠可以围成一个正方体,折好以后与“静”字相对的字是()A.着 B.沉 C.应 D.冷12.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一次函数y=kx+b的图像如图所示,则当kx+b>0时,x的取值范围为___________.14.因式分解:2m2﹣8n2=.15.若点(,1)与(﹣2,b)关于原点对称,则=_______.16.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,联结DC.如果AD=2,BD=6,那么△ADC的周长为.17.计算:_______________.18.不等式组的解集是_____________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.求此抛物线的解析式;求C、D两点坐标及△BCD的面积;若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.20.(6分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.21.(6分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.ABC笔试859590口试8085(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为,B同学得票数为,C同学得票数为;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断当选.(从A、B、C、选择一个填空)22.(8分)在平面直角坐标系中,一次函数的图象与反比例函数(k≠0)图象交于A、B两点,与y轴交于点C,与x轴交于点D,其中A点坐标为(﹣2,3).求一次函数和反比例函数解析式.若将点C沿y轴向下平移4个单位长度至点F,连接AF、BF,求△ABF的面积.根据图象,直接写出不等式的解集.23.(8分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:7688936578948968955089888989779487889291初二:7497968998746976727899729776997499739874(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级初一1236初二011018(说明:成绩90分及以上为优秀,80~90分为良好,60~80分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一8488.5初二84.274(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).24.(10分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=mx(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.26.(12分)漳州市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:请将以上两幅统计图补充完整;若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有_▲人达标;若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?27.(12分)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.(1)求y与x之间的函数关系式(要求写出自变量x的取值范围);(2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.【详解】A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;
B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;
C选项:两个班的最高分无法判断出现在哪个班,错误;
D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;
故选C.考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.2、C【解析】试题解析:∵这组数据的众数为7,∴x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1.故选C.考点:众数;中位数.3、C【解析】
直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案.【详解】A选项:x2+2x2=3x2,故此选项错误;B选项:(﹣2x2)3=﹣8x6,故此选项错误;C选项:x2•(﹣x3)=﹣x5,故此选项正确;D选项:2x2÷x2=2,故此选项错误.故选C.考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键.4、B【解析】
利用对称性可知直线DG是正五边形ABCDE和正三角形ABG的对称轴,再利用正五边形、等边三角形的性质一一判断即可;【详解】∵五边形ABCDE是正五边形,△ABG是等边三角形,∴直线DG是正五边形ABCDE和正三角形ABG的对称轴,∴DG垂直平分线段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正确.故选B.本题考查正多边形的性质、等边三角形的性质、轴对称图形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、A【解析】
根据特殊角三角函数值,可得答案.【详解】tan60°=故选:A.本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.6、A【解析】
已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.7、B【解析】y<0时,即x轴下方的部分,∴自变量x的取值范围分两个部分是−1<x<1或x>2.故选B.8、B【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.【详解】∵函数的图象在其象限内y的值随x值的增大而增大,∴m+1<0,解得m<-1.故选B.9、C【解析】
作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.【详解】解:作OH⊥AB于H,OG⊥CD于G,连接OA,由相交弦定理得,CE•ED=EA•BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE•ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由题意得,四边形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=,∴⊙O的直径为,故选C.此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.10、C【解析】
从正面看几何体,确定出主视图即可.【详解】解:几何体的主视图为故选C.本题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.11、A【解析】
正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答【详解】这是一个正方体的平面展开图,共有六个面,其中面“沉”与面“考”相对,面“着”与面“静”相对,“冷”与面“应”相对.故选:A本题主要考查了利用正方体及其表面展开图的特点解题,明确正方体的展开图的特征是解决此题的关键12、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x>1【解析】分析:题目要求kx+b>0,即一次函数的图像在x轴上方时,观察图象即可得x的取值范围.详解:∵kx+b>0,∴一次函数的图像在x轴上方时,∴x的取值范围为:x>1.故答案为x>1.点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.14、2(m+2n)(m﹣2n).【解析】试题分析:根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考点:提公因式法与公式法的综合运用.15、.【解析】
∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴==.故答案为.考点:关于原点对称的点的坐标.16、1.【解析】试题分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得∠BCD的度数,继而求得∠ADC的度数,则可判定△ACD是等腰三角形,继而求得答案.试题解析:∵BC的垂直平分线交AB于点D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周长为:AD+DC+AC=2+6+6=1.考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质.17、【解析】
先把化简为2,再合并同类二次根式即可得解.【详解】2-=.故答案为.本题考查了二次根式的运算,正确对二次根式进行化简是关键.18、x<-1【解析】解不等式①得:x<5,解不等式②得:x<-1所以不等式组的解集是x<-1.故答案是:x<-1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y=﹣(x﹣1)2+4;(2)C(﹣1,0),D(3,0);6;(3)P(1+,),或P(1﹣,)【解析】
(1)设抛物线顶点式解析式y=a(x-1)2+4,然后把点B的坐标代入求出a的值,即可得解;
(2)令y=0,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;
(3)先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.【详解】解:(1)、∵抛物线的顶点为A(1,4),∴设抛物线的解析式y=a(x﹣1)2+4,把点B(0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x﹣1)2+4;令y=0,则0=﹣(x﹣1)2+4,∴x=﹣1或x=3,∴C(﹣1,0),D(3,0);∴CD=4,∴S△BCD=CD×|yB|=×4×3=6;(3)由(2)知,S△BCD=CD×|yB|=×4×3=6;CD=4,∵S△PCD=S△BCD,∴S△PCD=CD×|yP|=×4×|yP|=3,∴|yP|=,∵点P在x轴上方的抛物线上,∴yP>0,∴yP=,∵抛物线的解析式为y=﹣(x﹣1)2+4;∴=﹣(x﹣1)2+4,∴x=1±,∴P(1+,),或P(1﹣,).本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.20、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】
试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.考点:①条形统计图;②扇形统计图.21、(1)90;(2)144度;(3)105,120,75;(4)B【解析】
(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360°乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得.【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B同学对应的扇形圆心角为360°×40%=144°,故答案为144;(3)A同学得票数为300×35%=105,B同学得票数为300×40%=120,C同学得票数为300×25%=75,故答案为105、120、75;(4)A的最终得分为=92.5(分),B的最终得分为=98(分),C的最终得分为=84(分),∴B最终当选,故答案为B.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22、(1)y=﹣x+,y=;(2)12;(3)x<﹣2或0<x<4.【解析】
(1)将点A坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B坐标,即可求△ABF的面积;(3)直接根据图象可得.【详解】(1)∵一次函数y=﹣x+b的图象与反比例函数y=(k≠0)图象交于A(﹣3,2)、B两点,∴3=﹣×(﹣2)+b,k=﹣2×3=﹣6∴b=,k=﹣6∴一次函数解析式y=﹣,反比例函数解析式y=.(2)根据题意得:,解得:,∴S△ABF=×4×(4+2)=12(3)由图象可得:x<﹣2或0<x<4本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.23、(1)1,2,19;(2)初一年级掌握生态环保知识水平较好.【解析】
(1)根据初一、初二同学的测试成绩以及众数与中位数的定义即可完成表格;(2)根据平均数、众数、中位数的统计意义回答.【详解】(1)补全表格如下:整理、描述数据:初一成绩x满足10≤x≤19的有:1119191119191711,共1个.故答案为:1.分析数据:在761193657194196195501911191929417119291中,19出现的次数最多,故众数为19;把初二的抽查成绩从小到大排列为:6972727374747474767671199697979191999999,第10个数为76,第11个数为71,故中位数为:(76+71)÷2=2.故答案为:19,2.(2)初一年级掌握生态环保知识水平较好.因为两个年级的平均数相差不大,但是初一年级同学的中位数是11.5,众数是19,初二年级同学的中位数是2,众数是74,即初一年级同学的中位数与众数明显高于初二年级同学的成绩,所以初一年级掌握生态环保知识水平较好.本题考查了频数(率)分布表,众数、中位数以及平均数.掌握众数、中位数以及平均数的定义是解题的关键.24、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】
(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有,∴这组数据的中位数为15.本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.25、(1)y=24x+1.(2)点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形,点D【解析】试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=-8试题解析:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m∴反比例函数的解析式:y=8x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025甘肃省安全员-A证考试题库附答案
- 2025年-河北省安全员-C证考试题库
- 2025重庆市安全员知识题库
- 《手的运动》课件
- 课件:新课标《信用工具和外汇》
- 《PICC置管及其维护》课件
- 《南朝山水诗》课件
- 单位人力资源管理制度合并汇编十篇
- 【语文课件】《落花生》复习课件
- 单位管理制度展示选集【人事管理篇】十篇
- 学校安全事故报告和调查处理制度(四篇)
- 石油化工管道布置设计规范
- 阿尔茨海默病(AD)的影像学诊断
- JJF 1622-2017太阳电池校准规范:光电性能
- GB/T 31.1-2013六角头螺杆带孔螺栓
- 西交大少年班英语考试试题
- 初中生物人教七年级上册(2023年更新) 生物圈中的绿色植物18 开花和结果
- 水电解质及酸碱平衡的业务学习
- CSCEC8XN-SP-安全总监项目实操手册
- 口腔卫生保健知识讲座班会全文PPT
- 成都市产业园区物业服务等级划分二级标准整理版
评论
0/150
提交评论