版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省沈丘县重点达标名校2025年中考数学试题命题比赛模拟试卷(7)请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.如图,直线y=3x+6与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移5个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(3,3) B.(4,3) C.(﹣1,3) D.(3,4)2.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30° B.40° C.50° D.60°3.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处4.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为()A.4 B.3 C. D.5.实数在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0 B.a-b<0 C.<0 D.>6.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是()A.﹣a<a<a2 B.a<﹣a<a2 C.﹣a<a2<a D.a<a2<﹣a7.下列四个图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.8.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为()A. B. C. D.9.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤1610.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为()A.(5,5) B.(5,4) C.(6,4) D.(6,5)二、填空题(本大题共6个小题,每小题3分,共18分)11.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.12.实数,﹣3,,,0中的无理数是_____.13.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。14.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.15.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.16.如图的三角形纸片中,,沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,则的周长为__________.三、解答题(共8题,共72分)17.(8分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.18.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x之间的函数表达式;求小张与小李相遇时x的值.19.(8分)如图,是等腰三角形,,.(1)尺规作图:作的角平分线,交于点(保留作图痕迹,不写作法);(2)判断是否为等腰三角形,并说明理由.20.(8分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.21.(8分)如图,已知△ABC,按如下步骤作图:①分别以A、C为圆心,以大于12②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.(1)求证:四边形ADCE是菱形;(2)当∠ACB=90°,BC=6,△ADC的周长为18时,求四边形ADCE的面积.22.(10分)如图,在中,,点在上运动,点在上,始终保持与相等,的垂直平分线交于点,交于,判断与的位置关系,并说明理由;若,,,求线段的长.23.(12分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40° B.55° C.65° D.75°24.如图,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(1)如图1,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=1.求CG的长.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】令x=0,y=6,∴B(0,6),∵等腰△OBC,∴点C在线段OB的垂直平分线上,∴设C(a,3),则C'(a-5,3),∴3=3(a-5)+6,解得a=4,∴C(4,3).故选B.点睛:掌握等腰三角形的性质、函数图像的平移.2、D【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.3、D【解析】
到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.4、C【解析】
设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.【详解】设I的边长为x根据题意有解得或(舍去)故选:C.本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.5、C【解析】
根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、<0,故C符合题意;D、a2<1<b2,故D错误;故选C.本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.6、D【解析】
根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.【详解】由数轴上的位置可得,a<0,-a>0,0<a2<a,所以,a<a2<﹣a.故选D本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置.7、D【解析】
根据轴对称图形与中心对称图形的概念判断即可.【详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选D.本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8、A【解析】
根据题意找到等量关系:①矩形面积+三角形面积﹣阴影面积=30;②(矩形面积﹣阴影面积)﹣(三角形面积﹣阴影面积)=4,据此列出方程组.【详解】依题意得:.故选A.考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9、C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.10、B【解析】
由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.【详解】解:∵四边形ABCD是矩形
∴AB∥CD,AB=CD,AD=BC,AD∥BC,
∵A(1,4)、B(1,1)、C(5,1),
∴AB∥CD∥y轴,AD∥BC∥x轴
∴点D坐标为(5,4)
故选B.本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、(1,﹣3)【解析】
画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).
故答案是:(1,-3).考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.12、【解析】
无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【详解】解:=4,是有理数,﹣3、、0都是有理数,是无理数.故答案为:.本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数.13、288°【解析】
母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.【详解】解:如图所示,在Rt△SOA中,SO=9,SA=15;则:设侧面属开图扇形的国心角度数为n,则由得n=288°故答案为:288°.本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.14、0<m<【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m,在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×m×m,∵m>0,解得OD=m,由直线与圆的位置关系可知m<6,解得m<,故答案为0<m<.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.15、4【解析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.16、【解析】
由折叠的性质,可知:BE=BC,DE=DC,通过等量代换,即可得到答案.【详解】∵沿过点的直线折叠这个三角形,使点落在边上的点处,折痕为,∴BE=BC,DE=DC,∴的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.三、解答题(共8题,共72分)17、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt△ABD中,由勾股定理可解得AD的长.试题解析:∵四边形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=OA=2,∴BD=2OB=4,在Rt△ABD中∴AD===.18、(1)300米/分;(2)y=﹣300x+3000;(3)分.【解析】
(1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.
(2)根据由小张的速度可知:B(10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD的解析式,列出方程,求解即可.【详解】解:(1)由题意得:(米/分),答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B(10,0),设直线AB的解析式为:y=kx+b,把A(6,1200)和B(10,0)代入得:解得:∴小张停留后再出发时y与x之间的函数表达式;(3)小李骑摩托车所用的时间:∵C(6,0),D(9,2400),同理得:CD的解析式为:y=800x﹣4800,则答:小张与小李相遇时x的值是分.考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.19、(1)作图见解析(2)为等腰三角形【解析】
(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.(2)分别求出的三个角,看是否有两个角相等,进而判断是否为等腰三角形.【详解】(1)具体如下:(2)在等腰中,,BD为∠ABC的平分线,故,,那么在中,∵∴是否为等腰三角形.本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.20、(1)证明见解析(2)BC=【解析】
(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;(2)可证明△ABC∽△BDC,则,即可得出BC=.【详解】(1)∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.考点:1.切线的判定;2.相似三角形的判定和性质.21、(1)详见解析;(2)1.【解析】
(1)利用直线DE是线段AC的垂直平分线,得出AC⊥DE,即∠AOD=∠COE=90°,从而得出△AOD≌△COE,即可得出四边形ADCE是菱形.
(2)利用当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.【详解】(1)证明:由题意可知:∵分别以A、C为圆心,以大于12∴直线DE是线段AC的垂直平分线,∴AC⊥DE,即∠AOD=∠COE=90°;且AD=CD、AO=CO,又∵CE∥AB,∴∠1=∠2,在△AOD和△COE中∠1=∠2∠AOD=∠COE=∴△AOD≌△COE(AAS),∴OD=OE,∵A0=CO,DO=EO,∴四边形ADCE是平行四边形,又∵AC⊥DE,∴四边形ADCE是菱形;(2)解:当∠ACB=90°时,OD∥BC,即有△ADO∽△ABC,∴ODBC又∵BC=6,∴OD=3,又∵△ADC的周长为18,∴AD+AO=9,即AD=9﹣AO,∴OD=A可得AO=4,∴DE=6,AC=8,∴S=1考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.22、(1).理由见解析;(2).【解析】
(1)根据得到∠A=∠PDA,根据线段垂直平分线的性质得到,利用,得到,于是得到结论;
(2)连接PE,设DE=x,则EB=ED=x,CE=8-x,根据勾股定理即可得到结论.【详解】(1).理由如下,∵,∴,∵,∴,∵垂直平分,∴,∴,∴,∴,即.(2)连接,设,由(1)得,,又,,∵,∴,∴,解得,即.本题考查了线段垂直平分线的性质,直角三角形的性质,勾股定理,正确的作出辅助线解题的关键.23、C.【解析】试题分析:由作图方法可得AG是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GH/T 1448-2024雅安藏茶原料要求
- 2024届内蒙古自治区锡林郭勒盟高三上学期期末考试历史试题(解析版)
- 2024-2025学年浙江省杭州地区(含周边)重点中学高二上学期期中考试历史试题(解析版)
- 广东省广州市天河区2025届高三上学期综合测试(一)英语试卷含答案
- 《美术基本种类》课件
- 单位管理制度集合大合集【人员管理】十篇
- 单位管理制度汇编大合集【人力资源管理篇】十篇
- 单位管理制度合并汇编人员管理
- 单位管理制度分享汇编【职员管理】十篇
- 高中语文一些重要的文化常识
- 银行资产保全业务管理办法
- 汽车吊篮使用专项施工方案
- 2024-2025学年四年级科学上册第三单元《运动和力》测试卷(教科版)
- 教育用地划拨流程
- 制造业智能制造工厂布局方案
- 10《吃饭有讲究》教学设计-2024-2025学年道德与法治一年级上册统编版
- 2024年中考数学二轮复习二次函数综合(含答案)
- 拆除铝合金门窗及附窗安全协议书
- 体外诊断试剂-C反应蛋白(CRP)测定试剂盒(胶乳增强免疫比浊法)临床评价报告-血清
- 八年级物理上册(沪粤版2024)新教材解读课件
- 人教版数学四上《大数的认识》说课稿
评论
0/150
提交评论