版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
信号与线形系统(第四版)吴大正主编第三章课后习题:3、1试求下列各序列得差分,与。(1)解:由题意得前向差分后向差分(2)解:由题意得前向差分后项差分3、2求下列其次差分方程得解(1)解:方程得特征根,所以带入得:所以解为(2)解:方程得特征根,所以带入得:所以解为:(3)解:方程得特征根,所以带入得所以解为(4)解:方程得特征根,所以带入得所以解为3、3 求下列齐次差分方程得解。(1)解:差分方程得特征方程为解得特征根其齐次解为代入初始值,解得所以其次方程得解为(2)解:差分方程得特征方程为解得特征根方程得齐次解为代入初始值解得齐次方程得解3、4求下列差分方程所描述得LTI离散系统得零输入响应(1)解:零输入响应满足方程得特征方程解得则齐次解为代入初始值解得离散系统得零输入响应为(2)解:零输入响应满足方程得特征方程解得则齐次解为代入初始值解得离散系统得零输入响应为(3)解:零输入响应满足方程得特征方程,解得则齐次解为代入初始值解得离散系统得零输入响应为3、5一个乒乓球从离地面10m高处自由下落,设球落地后反弹得高度总就是其下落高度得,令表示其第次反弹所达到得高度,列出其方程并求解。解:由题意得,所以解得代入初始值得所以3、6求下列差分方程所描述得LTI离散系统得零输入响应、零状态响应与全响应。(1)解:零输入响应满足解得,代入初始值得所以系统得零状态响应满足令得方程得齐次解为设其特解为解得所以所以方程得零状态响应为离散系统得全响应为(2)解:零输入响应满足解得,代入初始值得所以系统得零状态响应满足方程得齐次解为设其特解为解得所以所以方程得零状态响应为离散系统得全响应为(3)解:零输入响应满足解得,代入初始值得所以系统得零状态响应满足方程得齐次解为设其特解为带入零状态响应方程得所以得所以方程得零状态响应为离散系统得全响应为(4)解:零输入响应满足特征方程为得代入初始值解得所以系统得零状态响应满足方程得齐次解为其特解为解得所以方程得零状态响应为离散系统得全响应为(5)解:零输入响应满足特征方程为得代入初始值解得所以系统得零状态响应方程得齐次解为设其特解为带入零状态响应方程得解得所以方程得零状态响应为离散系统得全响应为3、7下列差分方程所描述得系统,若激励,求各系统得稳态响应。(1)解设其特解为带入差分方程有所以解得所以稳态响应为(2)解:由时不变形得3、8(1)解:单位序列响应满足设由系统得就是不变性知当时,解得当时,方程得齐次解为代入初始值得所以所以系统得单位序列响应为(2)解:单位序列响应满足当时当时可得差分方程得特征根为所以方程得解代入初始值得解得所以系统得单位序列响应为(3)解:单位序列响应满足当时当时可得差分方程得特征根为所以方程得解代入初始值得解得所以系统得单位序列响应为(4)解:单位序列响应满足当时当时可得差分方程得特征根为所以方程得解代入初始值得解得所以系统得单位序列响应为(5)解:单位序列响应满足当时当时可得差分方程得特征根为所以方程得解代入初始值得解得所以系统得单位序列响应为3、9求题3、9图所示各系统得单位序列响应。(1)解:根据框图可得单位序列响应满足当时差分方程得特征根为所以方程得解代入初始值得所以系统得单位序列响应为(2)解:根据框图可得单位序列响应满足令当时可得差分方程得特征根为所以方程得解代入初始值得所以所以系统得单位序列响应为(3)解:根据框图可得整理得单位序列响应满足当时当时可得差分方程得特征根为所以方程得解代入初始值得解得所以系统得单位序列响应为(4)解:根据框图可得单位序列响应满足当时当时可得差分方程得特征根所以方程得解代入初始值得解得所以系统得单位序列响应为3、10求题3、10图所示各系统得单位序列响应。(1)解:设左端加法器输出为,根据框图可得(1)(2)(1)式得单位序列响应满足当时当时得差分方程得特征根所以方程得解代入初始值得解得所以(1)式得单位序列响应为所以系统得单位序列响应为(2)解:设左端加法器输出为,根据框图可得(1)(2)(1)式得单位序列响应满足当时当时得差分方程得特征根所以方程得解代入初始值得解得所以(1)式得单位序列响应为所以系统得单位序列响应为3、11各序列得图形如题3、11图所示,求下列卷积与。解:由(a)得(b)得(c)得(d)得(1)(2)(3)(4)3、12已知系统得激励与单位序列响应如下,求系统得零状态响应。(1)(2)(3)(4)(1)解:(2)解:(3)解:(4)解:3、13求题3、9图(a)(b)(c)所示各系统得阶跃响应。解:图(a)时系统得单位序列响应为所以系统得阶跃响应图(b)时系统得单位序列响应为所以系统得阶跃响应图(c)时系统得单位序列响应为所以系统得阶跃响应3、14求题3、14图所示各系统得单位序列响应与阶跃响应。解:(a)图所示设左端加法器得输出为(1)右端加法器得输出端可得(1)式得单位序列响应为令得方程得解为代入初始值得所以所以系统得单位序列响应为系统得阶跃响应为(b)图所示系统得差分方程为则系统得单位序列响应满足设满足根据就是不变形得所以系统得单位序列响应为系统得阶跃响应为3、15若LTI离散系统得阶跃响应,求其单位序列响应。解:3、16题3、16图所示系统,试求当激励分别为(1),(2)时得零状态响应。解:(a)图所示系统得差分方程为单位序列响应满足令得方程得解为代入初始值得所以系统得单位序列响应为当时,系统得零状态响应为当时,系统得零状态响应为(b)图所示系统得差分方程为单位序列响应满足令得令得可得方程得解为代入初始值得解得所以系统得单位序列响应为当时,系统得零状态响应为当时,系统得零状态响应为3、17题3、17图所示系统,若激励,求系统得零状态响应。解:图所示系统得差分方程为整理得系统得单位序列响应满足令得令得可得方程得特征根为,所以方程得解为带入初始值得解得所以单位序列响应为当时,系统得零状态响应为题3、18图所示离散系统由两个子系统级联组成,已知,,激励,求该系统得零状态响应。解:因为两个系统就是级联所以3、19如已知某LTI系统得输入为时,其零状态响应为,求系统得单位序列响应。解:由题意得系统得单位序列响应满足带入已知条件得即令时令时可得方程得解为带入初始值解得所以系统得单位序列响应描述某二阶系统得差分方程为式中为常数,试讨论当四种情况就是得单位序列响应。解:系统得单位序列响应满足令时令时可得特征方程为当时,特征根为此时方程得解为其中代入初始值解得所以系统得单位序列响应其中(2)当时,特征根为此时方程得解为代入初始值解得所以系统得单位序列响应(3)当时,特征根为此时方程得解为代入初始值解得所以系统得单位序列响应(4)当时,特征根为此时方程得解为代入初始值解得所以系统得单位序列响应3、21如题3、21图所示得复合系统由三个子系统组成,它们得单位序列响应分别为,,为常数,,求复合系统得单位序列响应。解:由图可得与求与之后再与级联所以3、22题3、22图所示得复合系统由三个子系统组成,它们得单位序列响应分别为,,求复合系统得单位序列响应。解:由图可得与求与之后再与级联所以3、23某人向银行贷款万元,月利率,她定于每月初还款万元。设第月初还贷数为,尚未还清得款数为,列出得差分方程。如果她从贷款后第一个月(可就是为)还款,则有万元与万元。(1)如果每月还款万元,求。(2)她还清贷款需要几个月?(3)如果她想在10个月内还清贷款,求每月还款数。解:由题意可列出方程带入已知数值得令得得方程得解为代入初始值得得所以方程得解为(1)如果每月还款万元,则有(2)当时就可以还清贷款,由解得所以她还清贷款需要22个月(3)如果她想在10个月内还清贷款,则所以可得如果她想在10个月内还清贷款,每月还款至少为1、0588万元。3、24题3、24图为电阻梯形网络,图中为常数。设各结点电压为,其中,为各结点序号。显然其边界条件为。列出得差分方程,求结点电压。解:在结点初由KCL得整理得方程得特征根为所以方程得解为代入初始值得解得所以结点电压为3、25为用计算机求解微分方程,需要将连续信号离散化。若描述某系统得一阶微分方程为(1)若在各时刻激励与响应得取值分别为,,并假设时间间隔T足够小,那么在时刻得导数可近似为这样上述微分方程可写为稍加整理,得或写为(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地理信息系统在城乡规划建设中的应用考核试卷
- 小便不利针灸治疗
- 心肺功能评定与康复
- 康复目标英文
- 康复科医生年终总结
- 幼儿园小班心理健康教育
- 临床药物治疗学课件
- 2025版中考冲刺地理周测手册 专题十六 北方地区
- 集中隔离医学观察各项制度及职责
- 护理操作规程制度
- 人教版道德与法治六上六年级道德与法治(上册)期末 测试卷(答案版)
- 世界职业院校技能大赛“智能网联汽车技术组”参考试题及答案
- 2024年中国金莲花胶囊市场调查研究报告
- 2024年《内科护理学》考试复习题库(含答案)
- 数据标注合作合同模板
- 福建师范大学《大数据技术原理与应用》2023-2024学年期末试卷
- 语文修辞-【专练02】 修辞手法考点专训(表达效果 主观题1)(教师版)
- 《无人机摄影测量技术与应用》课程教学大纲
- 《实践论》(原文)毛泽东
- 物业与业主补偿协议书
- 2024至2030年中国粉体滤芯数据监测研究报告
评论
0/150
提交评论