江西省抚州市乐安县2021-2022学年中考数学最后一模试卷含解析_第1页
江西省抚州市乐安县2021-2022学年中考数学最后一模试卷含解析_第2页
江西省抚州市乐安县2021-2022学年中考数学最后一模试卷含解析_第3页
江西省抚州市乐安县2021-2022学年中考数学最后一模试卷含解析_第4页
江西省抚州市乐安县2021-2022学年中考数学最后一模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市乐安县2021-2022学年中考数学最后一模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.2.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A. B. C. D.3.下列关于x的方程中一定没有实数根的是()A. B. C. D.4.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为A.60元B.70元C.80元D.90元5.如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A11B11C11D11E11F11的边长为()A. B. C. D.6.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则ba的值是()A.14 B.-17.化简的结果是()A.±4 B.4 C.2 D.±28.不等式组的解集是()A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤29.计算(-1)×2的结果是()A.-2 B.-1 C.1 D.210.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.1二、填空题(本大题共6个小题,每小题3分,共18分)11.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_______.12.小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地_____千米.13.已知点A(a,y1)、B(b,y2)在反比例函数y=的图象上,如果a<b<0,那么y1与y2的大小关系是:y1__y2;14.在△ABC中,∠ABC<20°,三边长分别为a,b,c,将△ABC沿直线BA翻折,得到△ABC1;然后将△ABC1沿直线BC1翻折,得到△A1BC1;再将△A1BC1沿直线A1B翻折,得到△A1BC2;…,若翻折4次后,得到图形A2BCAC1A1C2的周长为a+c+5b,则翻折11次后,所得图形的周长为_____________.(结果用含有a,b,c的式子表示)15.垫球是排球队常规训练的重要项目之一.如图所示的数据是运动员张华十次垫球测试的成绩.测试规则为每次连续接球10个,每垫球到位1个记1分.则运动员张华测试成绩的众数是_____.16.因式分解:3a3﹣3a=_____.三、解答题(共8题,共72分)17.(8分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.18.(8分)如图,在中,,垂足为D,点E在BC上,,垂足为,试判断DG与BC的位置关系,并说明理由.19.(8分)某化妆品店老板到厂家选购A、B两种品牌的化妆品,若购进A品牌的化妆品5套,B品牌的化妆品6套,需要950元;若购进A品牌的化妆品3套,B品牌的化妆品2套,需要450元.(1)求A、B两种品牌的化妆品每套进价分别为多少元?(2)若销售1套A品牌的化妆品可获利30元,销售1套B品牌的化妆品可获利20元;根据市场需求,店老板决定购进这两种品牌化妆品共50套,且进货价钱不超过4000元,应如何选择进货方案,才能使卖出全部化妆品后获得最大利润,最大利润是多少?20.(8分)如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.21.(8分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:摸球总次数1020306090120180240330450“和为8”出现的频数210132430375882110150“和为8”出现的频率0.200.500.430.400.330.310.320.340.330.33解答下列问题:如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?22.(10分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m=;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?23.(12分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.求证:CD是⊙O的切线;若∠D=30°,BD=2,求图中阴影部分的面积.24.如图,AB是⊙O的直径,CD切⊙O于点D,且BD∥OC,连接AC.(1)求证:AC是⊙O的切线;(2)若AB=OC=4,求图中阴影部分的面积(结果保留根号和π)

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.2、A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3、B【解析】

根据根的判别式的概念,求出△的正负即可解题.【详解】解:A.x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,B.,△=36-144=-1080,∴原方程没有实数根,C.,,△=10,∴原方程有两个不相等的实数根,D.,△=m2+80,∴原方程有两个不相等的实数根,故选B.【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.4、C【解析】设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.5、A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=()10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=()2×2,则正六边形A11B11C11D11E11F11的边长=()10×2=.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.6、A【解析】

根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故选A.7、B【解析】

根据算术平方根的意义求解即可.【详解】4,故选:B.【点睛】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.8、D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D9、A【解析】

根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.【详解】-1×2=-故选A.【点睛】本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.10、C【解析】

根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.二、填空题(本大题共6个小题,每小题3分,共18分)11、16或1【解析】

题目给出等腰三角形有两条边长为5和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】(1)当三角形的三边是5,5,6时,则周长是16;(2)当三角形的三边是5,6,6时,则三角形的周长是1;故它的周长是16或1.

故答案为:16或1.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.12、1【解析】

根据题意设小明的速度为akm/h,小亮的速度为bkm/h,求出a,b的值,再代入方程即可解答.【详解】设小明的速度为akm/h,小亮的速度为bkm/h,,解得,,当小明到达B地时,小亮距离A地的距离是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案为1.【点睛】此题考查一次函数的应用,解题关键在于列出方程组.13、>【解析】

根据反比例函数的性质求解.【详解】反比例函数y=的图象分布在第一、三象限,在每一象限y随x的增大而减小,而a<b<0,所以y1>y2故答案为:>【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数的性质.14、2a+12b【解析】如图2,翻折4次时,左侧边长为c,如图2,翻折5次,左侧边长为a,所以翻折4次后,如图1,由折叠得:AC=A===,所以图形的周长为:a+c+5b,因为∠ABC<20°,所以,翻折9次后,所得图形的周长为:2a+10b,故答案为:2a+10b.15、1【解析】

根据众数定义:一组数据中出现次数最多的数据叫做众数可得答案.【详解】运动员张华测试成绩的众数是1.故答案为1.【点睛】本题主要考查了众数,关键是掌握众数定义.16、3a(a+1)(a﹣1).【解析】

首先提取公因式3a,进而利用平方差公式分解因式得出答案.【详解】解:原式=3a(a2﹣1)=3a(a+1)(a﹣1).故答案为3a(a+1)(a﹣1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.三、解答题(共8题,共72分)17、(1)时,S最大为(1)(-1,1)或或或(1,-1)【解析】试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式.(2)设出M点的坐标,利用S=S△AOM+S△OBM﹣S△AOB即可进行解答;(1)当OB是平行四边形的边时,表示出PQ的长,再根据平行四边形的对边相等列出方程求解即可;当OB是对角线时,由图可知点A与P应该重合,即可得出结论.试题解析:解:(1)设此抛物线的函数解析式为:y=ax2+bx+c(a≠0),将A(-1,0),B(0,-1),C(1,0)三点代入函数解析式得:解得,所以此函数解析式为:.(2)∵M点的横坐标为m,且点M在这条抛物线上,∴M点的坐标为:(m,),∴S=S△AOM+S△OBM-S△AOB=×1×(-)+×1×(-m)-×1×1=-(m+)2+,当m=-时,S有最大值为:S=-.(1)设P(x,).分两种情况讨论:①当OB为边时,根据平行四边形的性质知PB∥OQ,∴Q的横坐标的绝对值等于P的横坐标的绝对值,又∵直线的解析式为y=-x,则Q(x,-x).由PQ=OB,得:|-x-()|=1解得:x=0(不合题意,舍去),-1,,∴Q的坐标为(-1,1)或或;②当BO为对角线时,如图,知A与P应该重合,OP=1.四边形PBQO为平行四边形则BQ=OP=1,Q横坐标为1,代入y=﹣x得出Q为(1,﹣1).综上所述:Q的坐标为:(-1,1)或或或(1,-1).点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.18、DG∥BC,理由见解析【解析】

由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.【详解】解:DG∥BC,理由如下:

∵CD⊥AB,EF⊥AB,

∴CD∥EF,

∴∠2=∠DCE,

∵∠1=∠2,

∴∠1=∠DCE,

∴DG∥BC.【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.19、(1)A、B两种品牌得化妆品每套进价分别为100元,75元;(2)A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元【解析】

(1)求A、B两种品牌的化妆品每套进价分别为多少元,可设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.根据两种购买方法,列出方程组解方程;(2)根据题意列出不等式,求出m的范围,再用代数式表示出利润,即可得出答案.【详解】(1)设A种品牌的化妆品每套进价为x元,B种品牌的化妆品每套进价为y元.得解得:,答:A、B两种品牌得化妆品每套进价分别为100元,75元.(2)设A种品牌得化妆品购进m套,则B种品牌得化妆品购进(50﹣m)套.根据题意得:100m+75(50﹣m)≤4000,且50﹣m≥0,解得,5≤m≤10,利润是30m+20(50﹣m)=1000+10m,当m取最大10时,利润最大,最大利润是1000+100=1100,所以A种品牌得化妆品购进10套,B种品牌得化妆品购进40套,才能使卖出全部化妆品后获得最大利润,最大利润是1100元.【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.20、(1)n=2;y=x2﹣x﹣1;(2)p=;当t=2时,p有最大值;(3)6个,或;【解析】

(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;

(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;

(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,根据图3、图4两种情形即可解决.【详解】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,解得,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值.(3)“落点”的个数有6个,如图1,图2中各有2个,图3,图4各有一个所示.如图3中,设A1的横坐标为m,则O1的横坐标为m+,∴m2﹣m﹣1=(m+)2﹣(m+)﹣1,解得m=,如图4中,设A1的横坐标为m,则B1的横坐标为m+,B1的纵坐标比例A1的纵坐标大1,∴m2﹣m﹣1+1=(m+)2﹣(m+)﹣1,解得m=,∴旋转180°时点A1的横坐标为或【点睛】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y轴时,B1O1∥x轴,旋转角是180°判断出A1O1∥x轴时,B1A1∥AB,解题时注意要分情况讨论.21、(1)出现“和为8”的概率是0.33;(2)x的值不能为7.【解析】

(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x=7,根据题意先列出树状图,得出和为9的概率,再与进行比较,即可得出答案.【详解】解:(1)随着试验次数不断增加,出现“和为8”的频率逐渐稳定在0.33,故出现“和为8”的概率是0.33.(2)x的值不能为7.理由:假设x=7,则P(和为9)=≠,所以x的值不能为7.【点睛】此题主要考查了利用频率估计概率以及树状图法求概率,正确画出树状图是解题关键.22、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:36÷45%=80人;开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”的圆心角为360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.试题解析:解:(1)80,20,72.(2)骑自行车的人数为:80×20%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,1580答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.23、(1)证明见解析;(2)阴影部分面积为【解析】【分析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论