黑龙江省齐齐哈尔市五县2022年中考数学最后一模试卷含解析_第1页
黑龙江省齐齐哈尔市五县2022年中考数学最后一模试卷含解析_第2页
黑龙江省齐齐哈尔市五县2022年中考数学最后一模试卷含解析_第3页
黑龙江省齐齐哈尔市五县2022年中考数学最后一模试卷含解析_第4页
黑龙江省齐齐哈尔市五县2022年中考数学最后一模试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省齐齐哈尔市五县2022年中考数学最后一模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有()A.1个 B.3个 C.4个 D.5个2.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,若AD=3,BE=1,则DE=()A.1 B.2 C.3 D.43.如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=()A.76° B.78° C.80° D.82°4.已知,如图,AB//CD,∠DCF=100°,则∠AEF的度数为()A.120° B.110° C.100° D.80°5.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是(

)A. B. C. D.6.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A. B. C. D.7.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.8.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的()A. B.C. D.9.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60° B.50° C.40° D.30°10.《九章算术》是我国古代内容极为丰富的数学名著.书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步 B.5步 C.6步 D.8步二、填空题(共7小题,每小题3分,满分21分)11.图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为________.12.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.14.计算的结果是_____15.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.16.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.17.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=_____°.三、解答题(共7小题,满分69分)18.(10分)在平面直角坐标系中,O为坐标原点,点A(0,1),点C(1,0),正方形AOCD的两条对角线的交点为B,延长BD至点G,使DG=BD,延长BC至点E,使CE=BC,以BG,BE为邻边作正方形BEFG.(Ⅰ)如图①,求OD的长及的值;(Ⅱ)如图②,正方形AOCD固定,将正方形BEFG绕点B逆时针旋转,得正方形BE′F′G′,记旋转角为α(0°<α<360°),连接AG′.①在旋转过程中,当∠BAG′=90°时,求α的大小;②在旋转过程中,求AF′的长取最大值时,点F′的坐标及此时α的大小(直接写出结果即可).19.(5分)如图,在▱ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于12(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大小.20.(8分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)21.(10分)如图,P是半圆弧上一动点,连接PA、PB,过圆心O作交PA于点C,连接已知,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:通过取点、画图、测量,得到了x与y的几组值,如下表:012336说明:补全表格时相关数据保留一位小数建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;结合画出的函数图象,解决问题:直接写出周长C的取值范围是______.22.(10分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)a=,b=;(2)确定y2与x之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?23.(12分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.(1)求证:四边形BDFG是矩形;(2)若AE平分∠BAD,求tan∠BAE的值.24.(14分)已知,关于x的方程x2﹣mx+m2﹣1=0,(1)不解方程,判断此方程根的情况;(2)若x=2是该方程的一个根,求m的值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】

根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:>0,∴b>0,∴abc>0,故①正确;令x=3,y>0,∴9a+3b+c>0,故②正确;∵OA=OC<1,∴c>﹣1,故③正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴当x=﹣c时,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴设关于x的方程ax1+bx+c=0(a≠0)有一个根为x,∴x﹣c=4,∴x=c+4=,故④正确;∵x1<1<x1,∴P、Q两点分布在对称轴的两侧,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到对称轴的距离小于x1到对称轴的距离,∴y1>y1,故⑤正确.故选D.【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.本题属于中等题型.2、B【解析】

根据余角的性质,可得∠DCA与∠CBE的关系,根据AAS可得△ACD与△CBE的关系,根据全等三角形的性质,可得AD与CE的关系,根据线段的和差,可得答案.【详解】∴∠ADC=∠BEC=90°.∵∠BCE+∠CBE=90°,∠BCE+∠CAD=90°,∠DCA=∠CBE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CE=AD=3,CD=BE=1,DE=CE−CD=3−1=2,故答案选:B.【点睛】本题考查了全等三角形的判定与性质,解题的关键是熟练的掌握全等三角形的判定与性质.3、B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故选B.4、D【解析】

先利用邻补角得到∠DCE=80°,然后根据平行线的性质求解.【详解】∵∠DCF=100°,∴∠DCE=80°,∵AB∥CD,∴∠AEF=∠DCE=80°.故选D.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5、D【解析】

根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.6、C【解析】

解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.7、D【解析】

根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.8、D【解析】

当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.【详解】解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,∴直线经过一、二、四象限,双曲线在二、四象限.故选D.【点睛】本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.9、D【解析】

由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=60°,∠DEF=90°,

∴∠D=180°-∠DEF-∠1=30°.

∵AB∥CD,

∴∠2=∠D=30°.

故选D.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.10、C【解析】试题解析:根据勾股定理得:斜边为则该直角三角形能容纳的圆形(内切圆)半径(步),即直径为6步,故选C二、填空题(共7小题,每小题3分,满分21分)11、1.【解析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案为1“点睛”本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为1列出关系式是解题的关键.12、y=2(x+1)2+1.【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.13、小林【解析】

观察图形可知,小林的成绩波动比较大,故小林是新手.

故答案是:小林.14、【解析】【分析】根据二次根式的运算法则进行计算即可求出答案.【详解】==,故答案为.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.15、8【解析】

解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.16、20000【解析】试题分析:1000÷=20000(条).考点:用样本估计总体.17、62【解析】

根据折叠的性质得出∠2=∠ABD,利用平角的定义解答即可.【详解】解:如图所示:由折叠可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC,∴∠1=∠2=62°,故答案为62.【点睛】本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD是关键.三、解答题(共7小题,满分69分)18、(Ⅰ)(Ⅱ)①α=30°或150°时,∠BAG′=90°②当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【解析】

(1)根据正方形的性质以及勾股定理即可解决问题,(2)①因为∠BAG′=90°,BG′=2AB,可知sin∠AG′B=,推出∠AG′B=30°,推出旋转角α=30°,据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,②当α=315°时,A、B、F′在一条直线上时,AF′的长最大.【详解】(Ⅰ)如图1中,∵A(0,1),∴OA=1,∵四边形OADC是正方形,∴∠OAD=90°,AD=OA=1,∴OD=AC==,∴AB=BC=BD=BO=,∵BD=DG,∴BG=,∴==.(Ⅱ)①如图2中,∵∠BAG′=90°,BG′=2AB,∴sin∠AG′B==,∴∠AG′B=30°,∴∠ABG′=60°,∴∠DBG′=30°,∴旋转角α=30°,根据对称性可知,当∠ABG″=60°时,∠BAG″=90°,也满足条件,此时旋转角α=150°,综上所述,旋转角α=30°或150°时,∠BAG′=90°.②如图3中,连接OF,∵四边形BE′F′G′是正方形的边长为∴BF′=2,∴当α=315°时,A、B、F′在一条直线上时,AF′的长最大,最大值为+2,此时α=315°,F′(+,﹣)【点睛】本题考查的是正方形的性质、旋转变换的性质以及锐角三角函数的定义,解决本题的关键是要熟练掌握正方形的四条边相等、四个角相等,旋转变换的性质以及特殊角的三角函数值的应用.19、(1)见解析;(2)60°.【解析】

(1)先证明△AEB≌△AEF,推出∠EAB=∠EAF,由AD∥BC,推出∠EAF=∠AEB=∠EAB,得到BE=AB=AF,由此即可证明;(2)连结BF,交AE于G.根据菱形的性质得出AB=2,AG=12AE=3【详解】解:(1)在△AEB和△AEF中,,∴△AEB≌△AEF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB=∠EAB,∴BE=AB=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形;(2)连结BF,交AE于G.∵AB=AF=2,∴GA=AE=×2=,在Rt△AGB中,cos∠BAE==,∴∠BAG=30°,∴∠BAF=2∠BAG=60°,【点睛】本题考查了平行四边形的性质与菱形的判定与性质,解题的关键是熟练的掌握平行四边形的性质与菱形的判定与性质.20、()cm.【解析】

作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.【详解】如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,在中,∠BCD=60°,BC=60cm,∴,在中,∠BAF=45°,AB=60cm,∴,∴D到L的距离.【点睛】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.21、(1)(2)详见解析;(3).【解析】

(1)动手操作,细心测量即可求解;(2)利用描点、连线画出函数图象即可;(3)根据观察找到函数值的取值范围,即可求得△OBC周长C的取值范围.【详解】经过测量,时,y值为根据题意,画出函数图象如下图:根据图象,可以发现,y的取值范围为:,,故答案为.【点睛】本题通过学生测量、绘制函数,考查了学生的动手能力,由观察函数图象,确定函数的最值,让学生进一步了解函数的意义.22、(1)a=6,b=8;(2);(3)A团有20人,B团有30人.【解析】

(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a的值;用11人到20人的购票款数除以定价的款数,计算即可解得b的值;(2)分0≤x≤10与x>10,利用待定系数法确定函数关系式求得y2的函数关系式即可;(3)设A团有n人,表示出B团的人数为(50-n),然后分0≤x≤10与x>10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y1图像上点(10,480),得到10人的费用为480元,∴a=;由y2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元,∴b=;(2)0≤x≤10时,设y2=k2x,把(10,800)代入得10k2=800,解得k2=80,∴y2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论